欢迎登录材料期刊网

材料期刊网

高级检索

系统研究了稀土ErCrO_3铬氧化物的结构与磁特性,结果表明,室温下实验样品ErCrO_3呈正交的单相结构(Pbnm群);从热磁曲线M-T结合不同温度下的磁滞回线结果发现,在T>133K的高温区体系表现出典型的顺磁特性,其直流磁化率倒数随温度的变化很好地遵从居里-外斯定律,由此拟合可给出体系的有效平均磁矩μ_(eff)=10.57μB、顺磁居里温度T_(cw)=-30K.随温度降低,在133K以下样品呈现出弱铁磁的Г_4(F_x)相,即铁磁相变温度为T_N≈133K;当温度进一步降低到约20K,样品ErCrO_3经历了从Г_4(F_x)弱铁磁到反铁磁相G_y或Г_1(0)的转变,并呈现出自旋重新取向特征;结合ErCrO_3结构特征,这一温度依赖的复杂磁特性反映了Cr~(3+)-Cr~(3+)、Cr~(3+)-Er~(3+)和Er~(3+)-Er~(3+)离子之间的交换耦合作用.

The rare earth ErCrO_3 chromites have been systemically studied by structural and magnetic measurement.The results indicate that the samples show the perovskite-type ErCrO_3 orthorhombic structure with space group Pbnm.The magnetic properties shown that ErCrO_3 possess significant weak ferromagnetism below 133K.At T_(SR)≈20K,ErCrO_3 undergoes a spin reorientation from Г_4(A_x,F_x,C_z) to Г_1(A_x,G_y,C_z) or Г_1(0) where the weak ferromagnetic moment disappears.And in the region of higher temperature T>133K,the reciprocal of magnetic susceptibility χ~(-1) of ErCrO_3 chromites behaves linearly indicating a typical curie-weiss behavior fitted.The effective magnetic moment μ_(eff)=10.57μB and asymptotic paramagnetic curie temperature T_(cw)=-30K,which suggests the predominance of antiferromagnetic interactions in ErCrO_3 chromites.The current magnetization can be interpreted from the interaction between Cr~(3+)-Cr~(3+),Cr~(3+)-Er~(3+),Er~(3+)-Er~(3+).

参考文献

[1] Eerenstein W;Mathur ND;Scott JF .Multiferroic and magnetoelectric materials[J].Nature,2006(7104):759-765.
[2] Ramesh R;Spaldin NA .Multiferroics: progress and prospects in thin films[J].Nature materials,2007(1):21-29.
[3] Cheong SW;Mostovoy M .Multiferroics: a magnetic twist for ferroelectricity[J].Nature materials,2007(1):13-20.
[4] Fiebig M .[J].Journal of Physics D:Applied Physics,2005,38:123.
[5] Hill N A .[J].Journal of Physical Chemistry B,2000,104:6694.
[6] Ikeda N;Ohsumi H;Ohwada K et al.[J].NATURE,2005,436:1136.
[7] Ramesha K;Llobet A;Profen T et al.[J].Journal of Physics:Condensed Matter,2007,19:102202.
[8] Pena O;Antunes AB;Baibich MN;Lisboa PN;Gil V;Moure C .Spin reversal and magnetization jumps in ErMexMn1-xO3 perovskites (Me = Ni, Co)[J].Journal of Magnetism and Magnetic Materials,2007(1):78-90.
[9] Lal H B;Dwivedi R D;Gaur K .[J].Journal of Materials Science:Materials in Electronics,1996,7:35.
[10] Cooke A H;Martin D M;Wells M R .[J].Journal of Physics C:Solid State Physics,1974,7:3133.
[11] Bertaut E F;Mareschal J .[J].Solid State Communications,1967,5:93.
[12] Veyret C;Ayasse J B;Chaussy J et al.[J].Journal of Physiology(Paris),1970,31:607.
[13] Bertaut E F;Mareschal J;Pauthenet R et al.[J].Rebouillet Bull Soc Ceram,1976,A75:44.
[14] Homes L;Eibschutz M;Van Uitert L G .[J].Journal of Applied Physics,1970,41:1184.
[15] Eibschutz M;Homes L;Maita J P et al.[J].Solid State Communications,1970,8:1815.
[16] Eibschutz M;Cohen R L;West K W .[J].Physical Review,1969,178:572.
[17] Courths R;Hiifner S .[J].Zeitschrift für Physik B:Condensed Matter,1975,22:245.
[18] Bertaut E F;Rado G T;Suhlin H.Magnetism Ⅲ[M].New York:Academic Press,Inc,1963:149.
[19] Yamaguchi T;Tsushima K .[J].Physical Review B:Condensed Matter,1973,8:5187.
[20] Courths R .[J].Zeitschrift für Physik B:Condensed Matter,1975,22:253.
[21] Koehler W C;Wollan E O;Wilkinson M K .[J].Physical Review,1960,118:58.
[22] Yamaguchi T .[J].Journal of Physics and Chemistry of Solids,1974,35:479.
[23] Courths R;Hüfner S;Pelzl J et al.[J].Solid State Communications,1970,8:1163.
[24] Meltzer R S .[J].Physical Review B:Condensed Matter,1970,2:2398.
[25] Bertaut EF;Mareschal J;de Vries G et al.[J].IEEE Transactions on Magnetics,1966,2:453.
[26] Morishita T;Tsushima K .[J].Physical Review B:Condensed Matter,1981,24:1.
[27] Ray N;Waghmare U V .[J].Physical Review B:Condensed Matter,2008,77:134112.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%