以阳离子表面活性剂CTAB为牺牲模板、TEOS为硅源、硝酸铵/乙醇混合溶液为选择性溶剂,合成以表面经PVP修饰的聚苯乙烯(Polystyrene,PS)微球为内核、表面包覆介孔氧化硅(Mesoporous-silica,MSiO2)壳层的新型PS/MSiO2复合磨料.采用场发射扫描电镜(FESEM)、透射电镜(TEM)和原子力显微镜(AFM)测试,研究PS/MSiO2复合磨料的核壳结构以及经复合磨料抛光后的表面粗糙度均方根值和抛光速率.结果表明:PS/MSiO2复合磨料具有包覆完整的核壳结构,其PS内核尺寸为200~210 nm,介孔氧化硅壳层厚度约为30 nm,包覆层中存在大量放射状介孔孔道.氮气吸附/脱附测试表明:复合磨料的比表而积为612 m2/g,介孔孔径为2~3 nm:经复合磨料抛光后衬底表面粗糙度均方根值(RMS)和抛光速率(MRR)分别为0.252 nm和141 nm/min,明显优于粒径相当的常规SiO2磨料(0.317 nm,68 nm/min).复合磨料中有机内核及壳层中的介孔孔道结构有利于降低颗粒的弹性模量和表面硬度,从而有助于减小磨料在衬底表面的压痕深度并降低抛光表面粗糙度.此外,复合磨料可借助其高比表面积提高对抛光液中有效化学组分的吸附能力,从而增强接触微区内的化学反应活性以提高抛光速率.
参考文献
[1] | Mahadevaiyer Krishnan;Jakub W. Nalaskowski;Lee M. Cook.Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms[J].Chemical Reviews,20101(1):178-204. |
[2] | Impact of the CMP process on the electrical properties of ultra low k porous SiOCH[J].Microelectronic engineering,20103(3):333. |
[3] | Lomonosov, A.M.;Ayouch, A.;Ruello, P.;Vaudel, G.;Baklanov, M.R.;Verdonck, P.;Zhao, L.;Gusev, V.E..Nanoscale noncontact subsurface investigations of mechanical and optical properties of nanoporous low-k material thin film[J].ACS nano,20122(2):1410-1415. |
[4] | S. Gates;S. Papa Rao;V. Anandan;M. Krishnan;S. Cohen;Y. Ostrovski;N. Klymko;M. Chace;D. Canaperi.Effects of chemical mechanical polishing on a porous SiCOH dielectric[J].Microelectronic engineering,2012Mar.(Mar.):82-88. |
[5] | Armini S;Whelan CM;Maex K;Hernandez JL;Moinpour M.Composite polymer-core silica-shell abrasive particles during oxide CMP[J].Journal of the Electrochemical Society,20078(8):H667-H671. |
[6] | Yang Chen;Jinxia Lu;Zhigang Chen.Preparation, characterization and oxide CMP performance of composite polystyrene-core ceria-shell abrasives[J].Microelectronic engineering,20112(2):200-205. |
[7] | 陈杨;穆为彬;陈志刚.草莓状PS/SiO 2复合磨料的可控合成及其抛光性能[J].中国有色金属学报,2013(10):2962-2969. |
[8] | Lei Zhang;Haibo Wang;Zefang Zhang;Fei Qin;Weili Liu;Zhitang Song.Preparation of monodisperse polystyrene/silica core-shell nano-composite abrasive with controllable size and its chemical mechanical polishing performance on copper[J].Applied Surface Science,20113(3):1217-1224. |
[9] | Chen, Yang;Qian, Cheng;Miao, Naiming.Atomic force microscopy indentation to determine mechanical property for polystyrene-silica core-shell hybrid particles with controlled shell thickness[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2015Mar.31(Mar.31):57-63. |
[10] | Kazuhiro Shibuya;Daisuke Nagao;Haruyuki Ishii, Mikio Konno.Advanced soap-free emulsion polymerization for highly pure, micronsized, monodisperse polymer particles[J].Polymer: The International Journal for the Science and Technology of Polymers,20142(2):535-539. |
[11] | Ran, Z.;Sun, Y.;Chang, B.;Ren, Q.;Yang, W..Silica composite nanoparticles containing fluorescent solid core and mesoporous shell with different thickness as drug carrier[J].Journal of Colloid and Interface Science,2013:94-101. |
[12] | Sertchook H.;Avnir D..Submicron silica/polystyrene composite particles prepared by a one-step sol-gel process[J].Chemistry of Materials,20038(8):1690-1694. |
[13] | Kamlesh Kumar;Bhanu Nandan;Valeriy Luchnikov.A Novel Approach for the Fabrication of Silica and Silica/Metal Hybrid Microtubes[J].Chemistry of Materials: A Publication of the American Chemistry Society,200918(18):4282-4287. |
[14] | 丁红霞;尹晓爽;杨文忠;唐永明.PVP与表面活性剂混合模板对CaCO3结晶的调控作用[J].南京工业大学学报(自然科学版),2011(4):68-72. |
[15] | 潘旭晨;汤静;薛海荣;郭虎;范晓莉;朱泽涛;何建平.氮掺杂有序介孔碳-Ni纳米复合材料的制备及电化学性能[J].无机化学学报,2015(2):282-290. |
[16] | 杨俊;唐波;戴卫理;李兰冬;武光军;关乃佳.介孔分子筛MCM-48的氮化与表面胺化及其碱催化反应性能[J].中国科学(化学),2015(4):396-404. |
[17] | Xiaochun Chen;Yongwu Zhao;Yongguang Wang.Modeling the effects of particle deformation in chemical mechanical polishing[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,201222(22):8469-8474. |
[18] | 陈志刚;陈杨.纳米磨料硬度对超光滑表面抛光粗糙度的影响[J].中国有色金属学报,2005(7):1075-1080. |
[19] | 姚素薇;张璐;张卫国;张振宇;李鸿琦.多孔氧化铝膜的纳米力学性能研究[J].无机材料学报,2006(3):736-740. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%