欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleeble-1500热模拟试验机对一种中碳钒微合金钢在变形温度900~1100℃、应变速率0.01~10 s-1条件下的热变形行为进行研究.分别建立了实验钢的幂律、指数和双曲正弦本构方程,观察了实验钢在不同变形条件下的显微组织,得出了实验钢的动态再结晶稳态晶粒尺寸和峰值应变与Zener-Hollomon参数的关系.结果表明:双曲正弦本构方程具有最高的拟合精度;实验钢热变形激活能Q为273.225 kJ/mol,与奥氏体的自扩散激活能(270 kJ/mol)十分接近,说明实验钢在此变形条件下的速率控制机制是扩散控制的位错攀移;显微组织观察表明,实验钢的动态再结晶行为受变形温度和应变速率的影响;拟合得出实验钢的动态再结晶稳态晶粒尺寸( Ds)和峰值应变与Z参数的关系为ln Ds=-0.20031ln Z+7.94165和ln εp=0.18456ln Z-5.37383.

The compressive deformation behaviors of a medium carbon vanadium microalloyed steel were investigated at the temperatures from 900 ℃ to 1 100 ℃ and strain rates from 0. 01 s-1 to 10 s-1 on a Gleeble-1500 thermo-simulation machine, and the power law, exponential and hyperbolic sine types of Zener-Hollomon equations were established for this steel. The hot deformation microstructure was observed, and the dependence of steady-state grain size and the peak strain on Zener-Hollomon parameter of this steel was plotted. Results showed that the highest correlation coefficient was achieved for the hyperbolic sine law for this steel. The activation energy Q for this steel was determined as 273.225 kJ/mol, very close to the austenite lattice self-diffusion activation energy ( 270 kJ/mol ) , indicating that the rate-controlling mechanism is dislocation climb controlled by diffusion. Microstructure observation showed that the dynamic recrystallization behavior of this steel was affected by both deformation temperature and strain rate. The dependence of steady-state grain size and the peak strain on Zener-Hollomon parameter was obtained as ln Ds=-0. 200 31ln Z+7.941 65 and ln εp=0.184 56ln Z-5.373 83.

参考文献

[1] J.M.CABRERA .Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel under Hot Working Conditions[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1997(11):2233-2244.
[2] F. Bakkali El Hassani;A. Chenaoui;R. Dkiouak;L. Elbakkali;A. Al Omar .Characterization of deformation stability of medium carbon microalloyed steel during hot forging using phenomenological and continuum criteria[J].Journal of Materials Processing Technology,2008(1-3):140-149.
[3] Zhao, H.;Liu, G.;Xu, L..Rate-controlling mechanisms of hot deformation in a medium carbon vanadium microalloy steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:262-267.
[4] Mirzadeh, H.;Cabrera, J.M.;Prado, J.M.;Najafizadeh, A. .Hot deformation behavior of a medium carbon microalloyed steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(10/11):3876-3882.
[5] Meysami, M.;Mousavi, S.A.A.A. .Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(7/8):3049-3055.
[6] HAMED MIRZADEH;ABBAS NAJAFIZADEH;MOHAMMAD MOAZENY .Flow Curve Analysis of 17-4 PH Stainless Steel under Hot Compression Test[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2009(12):2950-2958.
[7] McQueen HJ.;Ryan ND. .Constitutive analysis in hot working[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1-2 Special Issue SI):43-63.
[8] Mandal, S;Rakesh, V;Sivaprasad, PV;Venugopal, S;Kasiviswanathan, KV .Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):114-121.
[9] YANG Hui,LI Zhen-hong,ZHANG Zhi-liang.Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of 20CrMnTi[J].浙江大学学报A(英文版),2006(08):1453-1460.
[10] 陈礼清,赵阳,徐香秋,刘相华.一种低碳钒微合金钢的动态再结晶与析出行为[J].金属学报,2010(10):1215-1222.
[11] Wei, H.-L.;Liu, G.-Q.;Xiao, X.;Zhao, H.-T.;Ding, H.;Kang, R.-M..Characterization of hot deformation behavior of a new microalloyed C-Mn-Al high-strength steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:140-146.
[12] McQUEEN H J;YUE S;RYAN N D et al.Hot working characteristics of steels in austenitic state[J].Journal of Materials Processing Technology,1995,53(1/2):293-310.
[13] S.F.MEDINA;C.A.HERNANDEZ .GENERAL EXPRESSION OF THE ZENER-HOLLOMON PARAMETER AS A FUNCTION OF THE CHEMICAL COMPOSITION OF LOW ALLOY AND MICROALLOYED STEELS[J].Acta materialia,1996(1):137-148.
[14] A. GALIYEV;R. KAIBYSHEV;G. GOTTSTEIN .CORRELATION OF PLASTIC DEFORMATION AND DYNAMIC RECRYSTALLIZATION IN MAGNESIUM ALLOY ZK60[J].Acta materialia,2001(7):1199-1207.
[15] LAASRAOUI A;JONAS J J .Prediction of steel flow stresses at high temperatures and strain rates[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1991,22(07):1545-1558.
[16] LAN Liang-yun,QIU Chun-lin,ZHAO De-wen,GAO Xiu-hua,DU Lin-xiu.Dynamic and Static Recrystallization Behavior of Low Carbon High Niobium Microalloyed Steel[J].钢铁研究学报(英文版),2011(01):55-60.
[17] 王承阳,刘国权,吴晋彬,许磊.中碳V-N微合金钢热变形行为[J].金属热处理,2010(01):33-36.
[18] 王承阳 .碳与钒氮对微合金钢热变形速率敏感性的影响规律研究[D].北京科技大学,2009.
[19] E.I.POLIAK;J.J.JONAS .A ONE-PARAMETER APPROACH TO DETERMINING THE CRITICAL CONDITIONS FOR THE INITIATION OF DYNAMIC RECRYSTALLIZATION[J].Acta materialia,1996(1):127-136.
[20] Ilaria SALVATORI;Tadanobu INOUE;Kotobu NAGAI .Ultrafine Grain Structure through Dynamic Recrystallization for Type 304 Stainless Steel[J].ISIJ International,2002(7):744-750.
[21] P. L. Mao;G. Y. Su;K. Yang .Dynamic recrystallisation of as cast austenite in 18-8 stainless steel[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2002(8):892-896.
[22] A.I. Fernandez;P. Uranga;B. Lopez;J.M. Rodriguez-Ibabe .Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb-Ti microalloyed steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):367-376.
[23] M. Shaban,B. Eghbali.Characterization of Austenite Dynamic Recrystallization under Different Z Parameters in a Microalloyed Steel[J].材料科学技术学报(英文版),2011(04):359-363.
[24] Elwazri AM.;Wanjara P.;Yue S. .Dynamic recrystallization of austenite in microalloyed high carbon steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):209-215.
[25] B.X. Wang;X.H. Liu;G.D. Wang .Dynamic recrystallization behavior and microstructural evolution in a Mn-Cr gear steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):102-108.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%