本文采用并行任意阶精度隐式格式的间断有限元方法,求解来流马赫数为0.01的低速可压缩无黏流动,为增强间断有限元对网格的适应性,采用参数化的方法同时对曲线边界上的积分点位置及外法向向量进行修正,计算结果表明在不做预处理的情况下,隐式间断有限元方法也能较好的计算低速流动,本文所做的参数化边界修正方法有助于间断有限元方法使用通用非结构网格进行高精度的计算.
参考文献
[1] | B Cockburn;G E Kainiadakis;C W Shu.Discontinuous Galerkin Methods[M].Theory,Computation and Applications.Springer,1999 |
[2] | W H Reed;T R Hill.Triangular mesh methods for the neutron transport equation.Technical Report LAUR-73-479[M].Los Alamos Scientific Laboratory,1973 |
[3] | F Bassi;and S Rebay.High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations[J].Journal of Computational Physics,1997:251-285. |
[4] | J. PERAIRE;P.-O. PERSSON .THE COMPACT DISCONTINUOUS GALERKIN (CDG) METHOD FOR ELLIPTIC PROBLEMS[J].SIAM Journal on Scientific Computing,2009(4):1806-1824. |
[5] | P -O Persson;and J Peraire .An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems[AIAA 2006-113.][R].,2006. |
[6] | P -O Persson;and J Peraire.Newton-GMRES preconditioning for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations[J].Journal on Scientific Computing,2008:1806-1824. |
[7] | Norbert Kroll.ADIGA? A European Project on the Development of Adaptive High Order Variational Methods For Aerospace Applications.European Conference On Computational Fluid Dynamics[A].ECCOMAS CFD,2006 |
[8] | P Battern;M A Leschziner;U C Goldberg.Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows[J].Journal of Computational Physics:38-78. |
[9] | Lilia Krivodonova and;Marsha Berger .High-order accurate implementation of solid wall boundary condition in curved geometries[J].Journal of Computational Physics,2006,211:492-512. |
[10] | A Nigro .Discontinuous Galerkin Methods for inviscid low Mach number flows[D].,2008. |
[11] | Laslo T;Diosady and;David L Darmofal .Discontinuous Galerkin solution of the Navier-Stokes Equations using Linear Mutigrid Precoditioning[AIAA2007-3942][R]. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%