Copper alloys with high strength and high conductivity are an important functional material with full of potential applications. In the present investigation, a bronze with higher tin content (Cu-13.5 wt pct Sn)was prepared successfully by spray forming, the feasibility of cold rolling this alloy was investigated, and the cold rolling characteristics of this alloy have also been discussed. The results indicate that the spray-formed Cu-13.5 wt pct Sn alloy, compared with the as-cast ingot, shows a quite fine and homogeneous single-phase structure, and, therefore shows an excellent workability. It can be cold-rolled with nearly 15% reduction in the thickness per pass and the total reduction can reach 80%. The classical border between the wrought and cast alloys is shifted to considerably higher tin contents by spray forming. After proper thermo-mechanical treatment, spray-formed Cu-13.5 wt pct Sn alloy exhibits excellent comprehensive mechanical properties.Particularly, it shows a low elastic modulus (~88 GPa) and a high flow stress (over 800 MPa) after cold forming. This combination of properties is unique in the domain of metallic materials and could open new possibilities in spring technology field.
参考文献
[1] | A. Lawley;A. G. Leatham .Spray forming commercial products : principles and practice[J].Materials Science Forum,1999(0):407-415. |
[2] | K.Siegert;S.Huber .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2002,326:63. |
[3] | H.R.Müller;S.Hansmann;K.Ohla.[A].Bremen,Germany,2000:205. |
[4] | J.P.Tardent;P.A.Isler.[A].Cardiff,UK,1996:211. |
[5] | Z.Y.Li;J.Shen;F.Y.Cao;Q.C.Li .[J].Journal of Materials Processing Technology,2003,137:60. |
[6] | X.F.Wang;J.Z.Zhao;C.Tian .[J].Acta Metallurgica Sinica,2005,41:1277. |
[7] | X.F.Wang;J.Z.Zhao;J.He;J.T.Wang .[J].Acta Metallurgica Sinica,2005,41:923. |
[8] | X.F.Wang;J.Z.Zhao;D.M.Liu;J.T.Wang G.Y.Chen .[J].Special Casting Nonferrous Alloys,2005,6:350. |
[9] | J.H.Zhao;D.M.Liu;H.Q.Ye .[J].Journal of Materials Science and Technology,2003,19(05):398. |
[10] | J.F.Sun;J.Shen;F.Y.Cao .[J].Journal of Materials Science and Technology,2001,17(01):105. |
[11] | F.Y.Cao;C.S.Cui;Q.C.Li .[J].Journal of Materials Science and Technology,2001,17(01):101. |
[12] | X.Liang;E.J.Lavernia;Q.Xu;V.V.Gupta E.J.Lavernia .[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1999,30(03):527. |
[13] | P.S.Grant .[J].Progress in Materials Science,1995,39:497. |
[14] | B.Cantor;K.H.Baik;P.S.Grant .[J].Progress in Materials Science,1997,42:373. |
[15] | Lin YANG .[D].沈阳:中国科学院金属研究所,2002. |
[16] | D.M.Liu;J.Z.Zhao;H.Q.Ye .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2004,372:229. |
[17] | J. S. Zhang;H. Cui;X. J. Duan;Z. Q. Sun;G. L. Chen .An analytical simulation of solidification behavior within deposited preform during spray forming process[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2000(1/2):257-265. |
[18] | A. MANONUKUL;F. P. E. DUNNE .INITIATION OF DYNAMIC RECRYSTALLIZATION UNDER INHOMOGENEOUS STRESS STATES IN PURE COPPER[J].Acta materialia,1999(17):4339-4354. |
[19] | 张豪,陈振华,孙亦.喷射共沉积6066Al/SiCp复合材料的组织与性能[J].稀有金属材料与工程,1998(04):226-229. |
[20] | J.P.Tardent;G.Himstead.Future Diection of Copper-based Alllys for Electrical and Electronic Applications[A].Indian Wells,California,1988 |
[21] | J.P.Tardent;B.Demestrah .[J].Draht,1999,1:43. |
[22] | M.Niewczas;Z.S.Basinski;J.D.Embury .[J].Philosophical Magazine A:Physics of Condensed Matter:Structure,Defects and Mechanical Properties,2001,81:1143. |
[23] | H.Conrad;S.Fuerstein;L.Rice .[J].Materials Science and Engineering,1967,2:157. |
[24] | A.Rohatgi;K.S.Vecchio;G.T.Gray .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32A:135. |
[25] | G.F.Pittinato;V.Kerlins;A.Phillips;M.A.Russo.SEM/TEM Fractography Handbook[M].Metals and Ceramics Information Center,1975 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%