欢迎登录材料期刊网

材料期刊网

高级检索

对引力场的能量-动量和角动量守恒定律研究进展进行了总结。依此探讨了一般五维时空膜宇宙模型中的能量-动量张量、角动量张量以及它们的守恒定律。通过计算一个膜宇宙模型中的能动张量,论证了该模型中"可见膜"上的引力非常弱,这可认为是从引力的角度反映了规范层次问题。结果与一般的结论,即引力系统总能量为零是一致的。同时,分析了这个膜宇宙模型中的角动量张量,计算了该模型中的总角动量,讨论了暴涨Randall-Sundren(RS)模型中的总角动量的一些性质。说明了在这类模型中总角动量的类空分量均为零,这与普通RS模型是一样的。同时,分析了RS模型中背景以及膜上的宇宙学常数,发现在RS模型中五维背景宇宙学常数和两个膜上的真空能都能取它们的自然值。最后通过修改RS模型,得到了一种可以产生很小的有效宇宙学常数的机制。

We summarized both the general covariant energy-momentum and angular momentum conservation law in the gravitational system and analyzed the general covariant energy-momentum tensor of the gravitational system in general five-dimensional cosmological in brane-universe models.After calculating this energy-momentum for the cosmological generalization of the Randall-Sundrum(RS) model which includes the original RS model as the static limit,we are able to show that the weakness of the gravitation on the "visible" brane is a general feature of this model.This is the origin of the gauge hierarchy from a gravitational point of view.Our results are also consistent with the fact that a gravitational system has vanishing total energy.We also discussed the properties of the general covariant angular momentum in five-dimensional brane-universe model.With calculation of the total angular momentum of this model,we analyzed the properties of the total angular momentum in the inflationary RS model.We pointed that the space-like components of the total angular momentum are zero while the others are non-zero,which agrees with the results from ordinary RS model.We also investigated the bulk cosmological constant and brane vacuum energies in RS model.We show that the five-dimensional bulk cosmological constant and the vacuum energies of the two branes could take their natural values.Finally we argued how we can generate a small four-dimensional effective cosmological constant on the branes by modifying the original RS model.

参考文献

[1] Kaluza T. Mathematics Physics. Berlin: Sitzungsber Press, 1921, 35: 966.
[2] Klein O. Z Phys, 1926, 37z895.
[3] Arkani-Hamed N, Dimopoulos S, Dvali G R. Phys Lett, 1998, B29 263[hep-ph/9803315].
[4] Randall L, Sundrum R. Phys Rev Lett, 1999, 83: 3370Fhep- ph/9905221]; Randall L, Sundrum R. Phys Rev Lett, 1999, 83 4690 [hep-th/9906064].
[5] Randall L, Sundrum R. Phys Rev Lett, 1999, 83: 3370Fhep- ph/9905221]; Randall L, Sundrum R. Phys Rev Lett, 1999, 83 4690 [hep-th/9906064].
[6] Erlich J, Katz E, Son D T, et al. Phys Rev Lett, 2005,95 261602 [FIep-ph/0501128].
[7] Einstein A. Ann Phys Lpz, 1916, 49 769.
[8] Papapetrou A. Proc R Ir Acad, 1951, A25: 11.
[9] Bergmann P G, Thompson R. Phys Rev, 1953, 89: 400.
[10] Landau L D, Lifshitz E M. The Classical Theory of Fields(Second). Reading Addison-Wesley, MA, 1962.
[11] Moller C, Ann Phys, 1958, 4: 347.
[12] Weinberg S. Gravitation and Cosmology. New York: Wiley, 1972.
[13] Msner C W, Thorne K S, Wheeler J A. Gravitation. New York: Freeman, 1973.
[14] Nakahara M. Geometry, Topology and Physics(Bristol: IOP Pbulishing). 1990.
[15] 段一士,刘继承,董学耕,物理学报,1987,36.760.
[16] Duan Y S, Liu J C, Dong X G. Gen Rel Gray, 1988, 20, 485.
[17] Fang S S, Duan Y S. Gen Rel Gray, 1995,27 887.
[18] Feng S S, Duan Y S. Class Quant Gray, 1999, 16 3237.
[19] Duan Y S, Feng S S. Commun. Theor Phys, 1996, 2S, 12.
[20] Liu Y X, Duan Y S, Zhang L J. Mod Phys Lett, 2007, A21 2855(gr-qc/0508113).
[21] Binetruy P, Deffayet C, Langlois D. Nucl Phys, 2000, B565 269.
[22] Binetruy P, Deffayet C, Ellwanger U, et al. Phys Lett 2000, B477: 285.
[23] Cline J M, Grojean C, Servant G. Phys Rev Lett, 1999, 83: 4245.
[24] Kim H B, Kim H D. Phys Rev, 2000, D61 064003.
[25] Jia Bei, Lee Xiguo, Zhang Pengming. J Theor Phys, 2008, 47 3391.
[26] Liu Y X, Duan Y S. gr-qc/0508103.
[27] Vargas T. Gen Rel Gray, 2004, 36: 1255.
[28] Liu Y X, Zhao Z H, Yang J, etal. arXiv: 07063245.
[29] Jia Bei, Lee Xiguo, Zhang Pengming. Chinese Physics, 2008, C32, 865.
[30] Weinberg S. Rev Mod Phys, 1989, 61: 1.
[31] Riss A G. Astron J, 1998, l16z 1009.
[32] Fre P, Trigiante M, Van Proeyen A. Class Quant Gray, 2002 19. 4157.
[33] De Roo M, Westra D B, Panda S. JHEP, 2003, 0302: 003.
[34] Aghahahaie Y, Burgess C P, Parameswaran SL, eta1. Nucl Phys, 2004, B680 389.
[35] Kachru S, Kallosh R, Linde A, etal. Phys Rev, 2003, D68 046005.
[36] Bousso R, Polehinski J. JHEP, 2000, 0006s 046005.
[37] Rubakov V A, Shaposhnikov M E. Phys Lett, 1983, B125: 139.
[38] Arkani-Hamed N, Dimopoulos S, Kaloper N, et al. Phys Lett, 2000, B480: 193.
[39] Kachru S, Schulz M B, Silverstein E. Phys Rev, 2000, D62: 045021.
[40] Forste S, Lalak Z, Lavignac S, et al. Phys Lett, 2000, B481: 360.
[41] Csaki C, Erlich J, Groiean C, etal. Nucl Phys, 2000, B584: 359.
[42] Cs' akiC, ErIich J, Grojcan C. Nucl Phys, 2001,B604 312.
[43] Tye S-H H, Wasserman I. Phys Rev Lett, 2001, 86: 1682.
[44] Jia bei, Lee Xiguo, Zhang Pengming. arXiv: 07073484, 2007.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%