The hot deformation behavior of Al-Cu-Mg-Ag was studied by isothermal hot compression tests in the temperature range of 573-773 K and strain rate range of 0.001-1 s-1 on a Gleeble 1500 D thermal mechanical simulator. The results show the flow stress of Al-Cu-Mg-Ag alloy increases with strain rate and decreases after a peak value, indicating dynamic recovery and recrystallization. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate and temperature, the flow stress equation is estimated to illustrate the relation of strain rate and stress and temperature during high temperature deformation process. The processing maps exhibit two domains as optimum fields for hot deformation at different strains, including the high strain rate domain in 623-773 K and the low strain rate domain in 573-673 K.
参考文献
[1] | WANG Shuncheng,CAO Furong,LI Yinglong,WEN Jinglin.Continuous Extruding Extending Forming of Semi-solid A2017 Alloy[J].武汉理工大学学报(材料科学版)英,2006(01):76-79. |
[2] | J Wang;X Wu;K Xia .Creep Behavior at Elevated Temperatures of an Al-Cu-Mg-Ag Alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1997,234-236:287-290. |
[3] | Susan Kazanjian;N Wang;A S Edgar .Creep Behavior and Microstructural Stability of Al-Cu-Mg-Ag and Al-Cu-Li-Mg-Ag[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1997,234-236:571-574. |
[4] | L.Reich;M.Murayama;K.Hono .Evolution of Ω phase in an Al-Cu-Mg-Ag alloy- a three-dimensional atom probe study[J].Acta materialia,1998(17):6053-6062. |
[5] | Zhan MY;Chen ZH;Zhang H;Xia WJ .Flow stress behavior of porous FVS0812 aluminum alloy during hot-compression[J].Mechanics research communications,2006(4):508-514. |
[6] | Bozzini B.;Cerri E. .Numerical reliability of hot working processing maps[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):344-347. |
[7] | V. K. Jain;K. V. Jata;R. J. Rioja;J. T. Morgan;A. K. Hopkins .Processing of an experimental aluminum-lithium alloy for controlled microstructure[J].Journal of Materials Processing Technology,1998(1/3):108-118. |
[8] | WANG Lingyun,HUANG Guangjie,FAN Yonge,LU Zhiwen,PAN Fusheng.Hot Deformation Kinetics of Magnesium Alloy AZ31[J].武汉理工大学学报(材料科学版)英,2006(03):15-17. |
[9] | Lyszkowski R;Bystrzycki J .Hot Deformation and Processing Maps of an Fe3Al Intermetallic Alloy[J].Intermetallics,2006,14(10-11):1231-1237. |
[10] | K P Rao;S M Doravivelu;H Md Roshan et al.Hot Deformation of Al-4Mg Alloy[J].Transactions of the Indian Institute of Metals,1983,37(05):471-476. |
[11] | Sarkar J.;Surappa MK.;Prasad YVRK. .OPTIMIZATION OF HOT WORKABILITY OF AN AL-MG-SI ALLOY USING PROCESSING MAPS[J].Journal of Materials Science,1995(11):2843-2848. |
[12] | P. Cavaliere .Hot and warm forming of 2618 aluminium alloy[J].Journal of Light Metals,2002(4):247-252. |
[13] | C M Sellars;W J McG Tegart .Hot Workability[J].International Metals Reviews,1972,17:1-24. |
[14] | Prasad YVRK;S Sasidhara.Hot Working Guide:a Compendium of Processing Maps[M].Warrendale,PA:ASM,1999:25-157. |
[15] | Y.V.R.K. Prasad;K.P. Rao .Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950 deg C[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):141-150. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%