{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了揭示黄铁矿中分散元素铟的产出状态与富集规律,开展了详细的岩石学、矿物学、地球化学、矿物物理学等方面的研究工作。结果表明,黄铁矿通常与闪锌矿、铁闪锌矿、磁黄铁矿、黄铜矿、方铅矿以及毒砂等共生,主要呈块状构造、浸染状构造、脉状构造、网状构造、梳状构造等,黄铁矿结构主要为交代结构、固溶体结构、自形?半自形粒状结构以及浸染状结构等。黄铁矿中的铟含量介于0.491×10?6~65.1×10?6之间,平均含量为14.38×10?6,然而,该矿田中的高峰矿床黄铁矿铟含量高于大福楼矿床以及铜坑矿床的烟含量,具有更为显著的超常富集特征。另外,黄铁矿中的分散元素镉含量较其余分散元素高,且高峰矿床黄铁矿中的镉矿物同样地比其他矿床富集更为明显。铟与镉以及铟与铊之间均表现出明显的正相关关系,但是,铟与铼之间则为负相关关系,而铟与镓之间不具有显著的正相关或负相关关系。大厂锡石硫化物矿床的主成矿元素锌可能更加有利于分散元素铟的迁移与结晶,对于铟的富集成矿作用至关重要。","authors":[{"authorName":"成永生","id":"cb8cfb9a-961c-42f7-8e4c-b24576e17357","originalAuthorName":"成永生"}],"doi":"10.1016/S1003-6326(16)64336-4","fpage":"2197","id":"5b8dc6df-f784-450c-b6e7-dbc91b3bfb08","issue":"8","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"0f59cbd4-8ae9-4c01-861a-a0c3e4227403","keyword":"分散元素铟","originalKeyword":"分散元素铟"},{"id":"74859e76-afa8-4d01-8de0-98af7b150b51","keyword":"黄铁矿","originalKeyword":"黄铁矿"},{"id":"4320da4e-9024-4b04-9056-4c32dde5d1a9","keyword":"晶格结构","originalKeyword":"晶格结构"},{"id":"4b70c3dd-846e-4e04-a078-2d18d91c93f0","keyword":"富集规律","originalKeyword":"富集规律"},{"id":"e8c223dc-ed27-4d8d-9596-64447160a749","keyword":"锡石硫化物矿床","originalKeyword":"锡石硫化物矿床"},{"id":"2ff8462b-9a13-4ae4-ae89-0bf667479736","keyword":"大厂矿田","originalKeyword":"大厂矿田"}],"language":"zh","publisherId":"zgysjsxb-e201608022","title":"黄铁矿中铟的产出特征与富集规律:以大厂锡矿田为例","volume":"26","year":"2016"},{"abstractinfo":"通过研究甘肃铜镍硫化物型矿床的矿物组成,用物理与化学相结合的方法进行矿物分离,将铜镍硫化矿物中金、铂、钯的赋存状态划分为磁性部分(磁黄铁矿相、磁铁矿相、独立矿物相)和非磁性部分(硫化矿相、脉石中类质同象相、独立矿物相)共6个相态.研究确定了各相态的提取剂及提取条件,用ICP-MS测定各相态中金、铂、钯的含量,从而查明其分布情况.各元素的各相态提取之和与样品各元素的总量之比,Au为105%~112%、Pt为92.5%~108%、Pd为110%~114%,其分布与磁性选择结果及岩矿鉴定矿物组分分布基本一致.方法具有较好的准确性和重现性,研究结果为寻找隐伏矿提供理论依据,并可在选矿工艺研究中发挥作用.","authors":[{"authorName":"唐志中","id":"e4b2a1d7-c846-433d-b976-a7a69c573a09","originalAuthorName":"唐志中"},{"authorName":"王琳","id":"25f7215a-49c3-480c-8dcd-88d4dccea6c8","originalAuthorName":"王琳"},{"authorName":"来新泽","id":"2c4b60d9-8898-47dd-b9a8-30e3b065f855","originalAuthorName":"来新泽"},{"authorName":"刘延霞","id":"345bdb78-e448-4c44-aa15-e6d7bd3b8dab","originalAuthorName":"刘延霞"},{"authorName":"王盈","id":"c2838c63-b933-4e0c-b6a1-7ecf5660a6a2","originalAuthorName":"王盈"}],"doi":"","fpage":"59","id":"2e8914d7-4c2b-4806-9bff-d0c04a901d14","issue":"1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"7784687d-e0a6-4fac-ad02-5ccdaa17771a","keyword":"分析化学","originalKeyword":"分析化学"},{"id":"3f93ecbb-6cb4-4418-b80c-e022f6cb360e","keyword":"相态分析","originalKeyword":"相态分析"},{"id":"d8a9905b-acf2-4c1f-8585-331acf620f1d","keyword":"磁性分离","originalKeyword":"磁性分离"},{"id":"7ca8ce09-2499-4e46-9886-4bf5f7707aae","keyword":"金","originalKeyword":"金"},{"id":"74eb53c6-867b-402a-b97b-533b06857c3c","keyword":"铂","originalKeyword":"铂"},{"id":"f3ac9ac0-e571-4473-a287-1f02e04b8c83","keyword":"钯","originalKeyword":"钯"},{"id":"92881785-4491-4841-92ff-05047374aaaa","keyword":"ICP-MS","originalKeyword":"ICP-MS"}],"language":"zh","publisherId":"gjs201301014","title":"甘肃铜镍硫化物矿床金铂钯相态分析","volume":"34","year":"2013"},{"abstractinfo":"辽东小佟家堡子金矿床为一产于元古代辽河群大石桥组变质地层中大型蚀变岩型矿床,矿体的产出主要受大石桥组不同岩性地层之间发育的层间破碎带构造控制.金矿化以浸染、细脉浸染状产出方式为主.矿石中主要金属硫化物矿物为黄铁矿,次为毒砂、方铅矿及闪锌矿.不同时期形成的矿物其产状有一定区别.电子探针分析结果表明,黄铁矿、毒砂为主要的载金矿物,根据硫化物矿物产状及含金性特点,提出了矿床为沉积-变质并经后期热液叠加改造成因的认识.","authors":[{"authorName":"王宝林","id":"3e0b35a6-eeee-48e5-b882-0281ab8d53de","originalAuthorName":"王宝林"},{"authorName":"代军治","id":"e8988de2-4edf-43da-9c4b-c5247ea19ced","originalAuthorName":"代军治"},{"authorName":"秦丹鹤","id":"839f1e18-6404-4355-bc2d-cb12df8abf74","originalAuthorName":"秦丹鹤"},{"authorName":"王可勇","id":"41d1864a-e07a-4e49-8e9e-c5ab28d6a357","originalAuthorName":"王可勇"}],"doi":"10.3969/j.issn.1001-1277.2012.02.005","fpage":"20","id":"d07b254d-7a07-4ed0-aa13-2b38146ed948","issue":"2","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"b4b75d0f-dea8-4e41-9880-c43f8ebd3418","keyword":"硫化物矿物","originalKeyword":"硫化物矿物"},{"id":"f6cffd61-94bc-46b0-9bd3-8a5d01641c67","keyword":"矿床成因","originalKeyword":"矿床成因"},{"id":"d627be59-adff-4012-a38d-f734a1ccaa5a","keyword":"小佟家堡子金矿床","originalKeyword":"小佟家堡子金矿床"},{"id":"122adb66-f569-495d-9319-149c7b9ebb27","keyword":"辽宁","originalKeyword":"辽宁"}],"language":"zh","publisherId":"huangj201202005","title":"辽宁小佟家堡子金矿床主要硫化物矿物特征及其成因意义","volume":"33","year":"2012"},{"abstractinfo":"Ⅱ-2号矿体为金川铜镍硫化物矿床的第二大矿体,位于Ⅱ矿区30行以东.为了解Ⅱ-2号矿体母岩浆在演化过程中的特殊性,采用镍锍试金ICP-MS法分析金川矿床Ⅱ-2号矿体各类矿石的Cu、Ni、S及铂族元素(PGE)含量,研究其特征,并与Ⅱ-1号矿体矿石进行对比.结果表明:矿石ΣPGE含量变化较大(44.6×10-9~8526.7×10-9),Pd/Ir介于1.25~26.55之间,为典型的岩浆型成因.海绵陨铁状矿石和局部海绵陨铁状矿石为Ⅱ-2号矿体主要的矿石类型,其PGE配分模式极为相似,且为渐变过渡的接触关系,说明二者为同一期岩浆侵位的产物.富铜矿石与块状硫化物矿石、含细脉状矿石的配分模式有互补的特征,富铜矿石具有极高的ΣPGE(8526.7×10-9)和Cu/Ni(5.46),块状硫化物矿石和含细脉状矿石相对富集IPGE(ΣPPGE/ΣIPGE<1),这三者与海绵陨铁状及局部海绵陨铁状矿石的区别明显,为岩浆演化到后期的产物,而从相互的接触关系来看,块状硫化物矿先于富铜矿侵位.通过研究Ⅱ-2号矿体与Ⅱ-1号矿体海绵陨铁状矿石的铂族元素及Cu、Ni特征,发现二者母岩浆均为地幔中等熔融形成的高MgO苦橄质玄武岩,具有相同的源区特征;由二者的铂族元素分异情况、Cu/Ni、Cu/Pd及Ir与Ru、Rh、Pt、Pd的相关性,研究二者的母岩浆在液态硫化物-硅酸盐体系和单硫化物固溶体-液态硫化物体系中的演化特征,认为Ⅱ-1号矿体和Ⅱ-2号矿体中的硫化物是先后从母岩浆中熔离,且分离后具有不同步的演化特征;通过Ⅱ-2号矿体的地球化学剖面及金川矿床的Cu、Ni品位纵剖面和XOY平面投影等值线图,证明这种先后熔离作用发生在深部岩浆房中,而后Ⅱ-2号矿体和Ⅱ-1号矿体的成矿岩浆分别进入两条相对独立的岩浆通道,最后由不同的岩浆通道中心侵位到最终的成矿空间,形成Ⅱ-2号矿体与Ⅱ-1号矿体.","authors":[{"authorName":"曾认宇","id":"18409bdf-d93b-4dcc-8f64-fca0cc086b63","originalAuthorName":"曾认宇"},{"authorName":"赖健清","id":"f2a1e5e8-c5ba-46d0-949d-f70f7ec7e799","originalAuthorName":"赖健清"},{"authorName":"毛先成","id":"36fda4e3-80d4-46cf-a579-7bd025312c13","originalAuthorName":"毛先成"},{"authorName":"赵莹","id":"9a3aa3c1-424b-473b-a904-31b19781f4b1","originalAuthorName":"赵莹"},{"authorName":"刘嫔","id":"a5ac187f-eb94-4574-8a72-d24455507239","originalAuthorName":"刘嫔"},{"authorName":"朱佳玮","id":"a787a1ad-3712-4285-a7f1-771ddc713dd3","originalAuthorName":"朱佳玮"},{"authorName":"岳斌","id":"7add2d63-5582-4d33-8a62-35d673c5da14","originalAuthorName":"岳斌"},{"authorName":"艾启兴","id":"875eaef0-89bd-42d7-a5db-f801808faa3c","originalAuthorName":"艾启兴"}],"doi":"","fpage":"149","id":"e62ed681-30aa-4d3e-b394-6f643650dc2b","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"a8ed6728-cf2a-4145-ace8-9001b929ff84","keyword":"金川","originalKeyword":"金川"},{"id":"0ea67c3b-50de-4f1c-86e7-a62691abf1ce","keyword":"铜镍硫化物矿床","originalKeyword":"铜镍硫化物矿床"},{"id":"3a25db05-6cab-4327-9cfb-4ab7fb2de137","keyword":"铂族元素","originalKeyword":"铂族元素"},{"id":"25c07bab-6a57-4ba5-8bdd-4e15da49770a","keyword":"岩浆通道","originalKeyword":"岩浆通道"},{"id":"c6119390-15b4-40a1-8d41-cc39190c61ae","keyword":"成矿过程","originalKeyword":"成矿过程"}],"language":"zh","publisherId":"zgysjsxb201601018","title":"金川铜镍硫化物矿床铂族元素地球化学差异及其演化意义","volume":"26","year":"2016"},{"abstractinfo":"采用气相色谱和硫化学发光检测(GC-SCD)技术,经过对色谱条件的优化,建立了汽油馏分中硫化物形态分布的测定方法.用标准物质的保留时间辅以化学法脱除硫醇、硫醚的方法对107个硫化物进行了定性;标准硫化物保留时间重复测定结果的相对标准偏差(RSD)≤0.25%.用内标法对主要的硫化物和总硫含量进行了定量,方法的加标回收率为96%~115%;同一样品重复测定5次,含硫大于7 mg/kg的硫化物组分重复测定结果的RSD≤8.9%.所建立的方法可用于不同装置的汽油馏分的硫化物形态分布规律的研究.","authors":[{"authorName":"花瑞香","id":"e043c657-6e20-428f-a047-b918baa10ed5","originalAuthorName":"花瑞香"},{"authorName":"李艳艳","id":"4407683a-4d86-4c3d-8531-457960c7d016","originalAuthorName":"李艳艳"},{"authorName":"郑锦诚","id":"14631d0d-1a01-4d2e-bc12-1e66df3b9a3e","originalAuthorName":"郑锦诚"},{"authorName":"王京华","id":"8232717b-7877-4f51-ad11-ccc9f1e2bfe2","originalAuthorName":"王京华"},{"authorName":"路鑫","id":"004d5ee3-3328-43aa-87d0-6322c5c04ccb","originalAuthorName":"路鑫"},{"authorName":"许国旺","id":"ab148811-166c-40b3-80bb-29e0586b0df6","originalAuthorName":"许国旺"}],"doi":"10.3321/j.issn:1000-8713.2004.05.013","fpage":"515","id":"cbcc8b96-23b5-4603-967a-9fb4eb55cb22","issue":"5","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"4be584f5-23cb-42e5-8f46-15aa0d91b326","keyword":"气相色谱","originalKeyword":"气相色谱"},{"id":"d94cd68a-7ff5-4a26-99cf-6ba2ea50aa4f","keyword":"硫化学发光检测","originalKeyword":"硫化学发光检测"},{"id":"fb9eca53-fa4b-41ad-aa0a-4f81fce16017","keyword":"硫化物","originalKeyword":"硫化物"},{"id":"2ef4359e-4626-4d66-a4ba-d1ca0072d1d9","keyword":"汽油","originalKeyword":"汽油"}],"language":"zh","publisherId":"sp200405013","title":"汽油馏分的硫化物形态分布研究","volume":"22","year":"2004"},{"abstractinfo":"提出了以预氧化和加入玻璃化试剂的方法熔融处理试样,使硫化物矿可以用X射线荧光光谱仪测定,从而使硫化矿测定过程快速,结果更准确,满足了日常分析要求.","authors":[{"authorName":"赵耀","id":"9b50ed7b-f4db-464b-a8d8-3744c09c5469","originalAuthorName":"赵耀"}],"doi":"10.3969/j.issn.1000-7571.2001.05.024","fpage":"67","id":"de74e9dd-9756-43be-a7b5-93915c30b566","issue":"5","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"e2f5b86c-3b31-4d5d-8e80-daa167f9e9ea","keyword":"硫化物矿","originalKeyword":"硫化物矿"},{"id":"044e85a7-ca19-40f7-9dc9-79e3b189d610","keyword":"预氧化","originalKeyword":"预氧化"},{"id":"9a2efba8-1119-4fc9-b636-8d26099fbad0","keyword":"玻璃化试剂","originalKeyword":"玻璃化试剂"},{"id":"5790d562-9e78-4065-8598-45426eb847dd","keyword":"XRF","originalKeyword":"XRF"}],"language":"zh","publisherId":"yjfx200105024","title":"XRF法分析硫化物矿的试样制备","volume":"21","year":"2001"},{"abstractinfo":"金属硫化物纳米材料因其具有优异的光电特性而成为太阳能量转换、光电器件、催化等前沿领域的研究热点。通过对金属硫化物纳米结构的设计及其薄膜材料的可控合成和组装,可使其在太阳能利用和光电子集成器件等应用上发挥更大作用。","authors":[],"doi":"","fpage":"46","id":"90abe9a7-2f97-4f3a-a38a-8c8f715c1835","issue":"8","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"c4aa6dd0-cd85-4b9e-beac-e91ece541a40","keyword":"金属硫化物","originalKeyword":"金属硫化物"},{"id":"8501ce88-efb3-4fd1-9987-9f6c9b7b697a","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"a03e3351-222a-4170-a9b6-78adac4b3ee5","keyword":"薄膜性能","originalKeyword":"薄膜性能"},{"id":"d22637d3-e54f-45ab-9670-646b66a2c786","keyword":"太阳能利用","originalKeyword":"太阳能利用"},{"id":"9bea22fb-11a0-4702-bc19-063423c3d6f0","keyword":"能量转换","originalKeyword":"能量转换"},{"id":"b112491e-3de3-4a22-8204-414dc51fae5e","keyword":"光电特性","originalKeyword":"光电特性"},{"id":"48a86b67-fd82-4a77-a030-4fbd52e05a89","keyword":"光电器件","originalKeyword":"光电器件"},{"id":"ff2e2541-713a-4ecf-8d7d-3d74d03792d5","keyword":"可控合成","originalKeyword":"可控合成"}],"language":"zh","publisherId":"zgcljz201208012","title":"金属硫化物纳米薄膜性能研究获进展","volume":"31","year":"2012"},{"abstractinfo":"用电化学方法研究了碱性溶液中硫化物在Pt电极上的氧化过程。结果表明,硫离子在-600~+750mV(vs.SCE)存在两个电化学氧化过程。经热力学、动力学和化学分析证实,在约-400mV时硫离子首先氧化为单质硫及多硫化物,沉积在电极表面;约250 mV处,单质硫及多硫化物进一步氧化为硫酸根离子而进入溶液。低电位下的氧化反应是可逆反应,硫离子扩散为控制步骤;高电位下,单质硫进一步氧化为硫酸根离子的反应是不可逆反应。而两反应过程密切相关。","authors":[{"authorName":"刘秀玲","id":"7948f269-d02f-4b99-af38-c48789959d74","originalAuthorName":"刘秀玲"},{"authorName":"王佳","id":"ceae5d6c-f349-4c84-98ad-dfdcc7c1439b","originalAuthorName":"王佳"}],"doi":"10.3969/j.issn.1001-1560.2001.03.001","fpage":"1","id":"44c9958d-1b04-4142-b8f1-4ba13e7d6f78","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"7f432994-690d-4e9e-8c26-0d24d07fd235","keyword":"电化学氧化","originalKeyword":"电化学氧化"},{"id":"1ebfdaf8-ff11-44a7-babd-eec8f8a8209e","keyword":"硫化物","originalKeyword":"硫化物"},{"id":"9eca216a-e7ea-413f-b73c-41423daaae38","keyword":"硫","originalKeyword":"硫"},{"id":"f7b770d1-fded-4240-b5fc-b44dabd7a08d","keyword":"硫酸根离子","originalKeyword":"硫酸根离子"}],"language":"zh","publisherId":"clbh200103001","title":"硫化物电化学氧化过程研究","volume":"34","year":"2001"},{"abstractinfo":"首次用干涉涂层金相显微镜测定一些硫化物相的光学常数并将之用于定量金相术。 测定了各相的折射系数和吸收系数,还指出使金相组织呈现尽可能高的黑白衬度和满意的色衬度的条件。报道了能使多种硫化物相的光反射率近乎消失的涂层材料和按德国工业标准DIN6164标定各相颜色的结果。 当采用不吸收光的涂层时,对每一个相而言,其干涉极小的光反射率与涂层的折射系数之间有简单的数学关系,据此提出一个新方法,以准确地判断满足各种相、包括硫化物相的振幅条件的涂层折射系数值。 硫化物是一组颇复杂的相,常用的涂层材料ZnS或ZnSe可能欠或过满足它们的振幅条件,为此提供必要的数据也是本文的目的之一。","authors":[{"authorName":"吴维(山文)","id":"30537551-2860-406a-88c3-5ef8eb5fbfc0","originalAuthorName":"吴维(山文)"},{"authorName":"I.Aydin","id":"681ae3ca-99de-4212-9f4f-48dd696421e1","originalAuthorName":"I.Aydin"},{"authorName":"H.E.Bühler","id":"22ab45f2-ade8-44d5-8a74-06808eb77a0a","originalAuthorName":"H.E.Bühler"}],"categoryName":"|","doi":"","fpage":"79","id":"0ae6f387-3d1f-4e0c-b447-7ffb8116d6da","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1983_2_8","title":"硫化物相光学常数的测定","volume":"19","year":"1983"},{"abstractinfo":"易切削钢中硫化物的尺寸和化学组成对切削性能和热脆性有很大影响.详细研究了高温下硫化物尺寸和化学组成的演变行为,结果表明,1100~1250℃加热后硫化物发生了粗化长大,平均尺寸从初始的5.5μm增大至8~10μm,在1 300℃时保温2h后硫化物发生了固溶,尺寸减小为2.6μm;高温处理后硫化物中固溶铁的质量分数从15.9%降低至5%,加热后的硫化物熔点从初始的825℃提高至890℃.合适的高温处理能够增大硫化物的尺寸,同时改善硫化物的化学组成,提高熔点.","authors":[{"authorName":"贺莹莹","id":"72ec986f-f080-491f-86ca-816cf23ff7fb","originalAuthorName":"贺莹莹"},{"authorName":"周铖","id":"8f9f98a7-6d79-4d21-81fd-57c06bddb281","originalAuthorName":"周铖"},{"authorName":"李鸿友","id":"b08f4b28-75fe-4c4f-84b9-99d353632ca5","originalAuthorName":"李鸿友"},{"authorName":"麻晗","id":"5a134bbb-5beb-446d-8a5e-545e79a96572","originalAuthorName":"麻晗"}],"doi":"","fpage":"59","id":"8ce6628a-d833-49df-b673-e06cc9ccb9f1","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"9a23a57e-0c05-418f-8fb9-c6827b368f75","keyword":"易切削钢","originalKeyword":"易切削钢"},{"id":"3266c3f9-01f9-4f77-bd96-27537ca4ae86","keyword":"硫化物","originalKeyword":"硫化物"},{"id":"a25c27d8-5336-4ba6-82c5-1b2fb4057792","keyword":"粗化长大","originalKeyword":"粗化长大"},{"id":"8ffbbe46-a84e-47b9-b2f2-28a0d20b7a09","keyword":"固溶","originalKeyword":"固溶"}],"language":"zh","publisherId":"gtyjxb201404012","title":"硫系易切削钢中硫化物的高温行为","volume":"26","year":"2014"}],"totalpage":4043,"totalrecord":40421}