为研究钢轨万能轧制过程中轨头、轨底与轨腰断面之间的金属横向流动规律,根据金属横向流动体积与延伸系数的关系,基于钢轨轧制前后体积不变条件推导出轨头、轨底与轨腰之间金属横向体积流动率数学模型。解析计算结果表明:轨头流向轨腰的金属体积流动率与相应轨头综合变形影响因子呈反比关系,与相应轨底综合变形影响因子成正比关系;轨底流向轨腰的金属体积流动率分别与相应轨底综合变形影响因子呈反比关系,与轨头综合变形影响因子呈正比关系;压下系数对轨头及轨底流向轨腰的金属体积流动率的影响比宽展系数大得多。为验证理论模型,完成了钢轨的万能热轧实验,实测了不同轧制规程时钢轨各部分轧制前后断面形状以及体积变化,并与理论计算结果进行了比较。理论计算结果与实验结果误差不超过±16%,可用于钢轨万能轧制实践。
For studying the metal flow mechanism along the lateral direction in rail universal rolling, according to the relationship between the metal flow volume and the elongation coefficient of different parts of rail, the volume ratio of metal lateral flow between the base of rail, the head of rail and the waist of rail were derived on the base of the law of volume constancy. It is concluded from the analyzing results that the flow ratio of volume between the head of rail and the waist of rail is proportional to the integrated deformation factor for the head of rail, and it is inversely proportional to the integrated deformation factor for the base of rail. So does the flow ratio of volume between the base of rail and the waist of rail. Moreover, the reduction coefficient influences the flow ratio of volume more remarkably than the spread coefficient. For verifying the theoretical model, the universal rolling experiments were accomplished and the volume of outgoing workpiece subject to different rolling technology was measured. Compared with the experimental results, the prediction error of theoretical model is less than ±16%. So, it is reliable and feasible to preset the rolling technology rationally according to this theoretical model.
参考文献
[1] | XIONG Shangwu,ZHENG Guofeng,LIU Xianghua, et al.Three-dimensional thermo-mechanical finite element simulation of the vertical-horizontal rolling process [J]. Journal of Materials Processing Technology,2001,(110):89-97.,2001. |
[2] | JIN Xiaoguang,LIU Yuli,LIAN Jiachuang,et al. Three-dimensional analysis of the universal beam tandem rolling process Part II:stress analysis [J]. Journal of Materials Processing Technology,2000, 102 (1-3), 65-69.,2000. |
[3] | JIN Xiaoguang,LIU Yuli,LIAN Jiachuang,et al. Three-dimensional analysis of the universal beam tandem rolling process Part I:Deformation analysis [J]. Journal of Materials Processing Technology, 2000, 102 (1-3):59-64.,2000. |
[4] | GLOWACKI M.The mathematical modelling of the rmo-mechanical processing of steel during multi-pass shape rolling[J].Journal of Materials Processing Technology, 2005, 168(2):336-343.,2005. |
[5] | JEONGSH,LEESH,KIMGH,et al .Computer simulation of U-channel for under-rail roll forming using rigid-plastic finite element methods[J].Journal of Materials Processing Technology,2008,201:118-122.,2008. |
[6] | DONG Yong-gang,ZHANG Wen-zhi,CAO Hui.Determination of Forward Slip Coefficient During Heavy Rail Rolling Using Universal Mill[J].钢铁研究学报(英文版),2008(02):32-38. |
[7] | DONG Yong-gang,ZHANG Wen-zhi,SONG Jian-feng.Theoretical and Experimental Research on Rolling Force for Rail Hot Rolling by Universal Mill[J].钢铁研究学报(英文版),2010(01):27-32. |
[8] | 宗伟,高密超,陈林,金自力,任慧平,汝静.重轨万能轧制压下量与腿长变化关系的实验模拟研究[J].内蒙古科技大学学报,2008(04):316-318. |
[9] | 高密超,宗伟,田仲良,陈林,金自力,任慧平.重轨UR万能孔轧制腿高增长模型研究[J].内蒙古科技大学学报,2008(02):147-150. |
[10] | 金梁,余驰斌,叶传龙,芦忆萱,熊建良,董茂松.重轨万能连轧变形计算的数学模型及其应用[J].特殊钢,2009(06):7-9. |
[11] | 郭煜敬,谢志江,王彦忠,陶功明,杨奇凡.万能轧制线高速钢轨轧制参数优化模型研究[J].中国机械工程,2010(10):1200-1202,1207. |
[12] | 郭煜敬,谢志江,王彦忠,陶功明.重轨万能轧制过程金属三维流动的复合分析法[J].重庆大学学报(自然科学版),2010(01):31-35,66. |
[13] | 董永刚,张文志,宋剑锋.钢轨万能轧制过程轨头宽展规律的理论和实验研究[J].中国机械工程,2009(08):1004-1007. |
[14] | 董永刚,张文志,宋剑锋.钢轨万能轧制过程轨底宽展的理论及实验研究[J].中南大学学报(自然科学版),2011(09):2676-2680. |
[15] | 董永刚,张文志,宋剑锋.钢轨万能轧制过程金属延伸规律的理论与试验研究[J].机械工程学报,2010(06):87-92. |
[16] | 中岛浩卫. H型钢的万能轧制特性[M]. 申光宪译.国外重型机械(型钢轧制专辑).沈阳:东北重型机械学院, 1983:80-86.,1983. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%