欢迎登录材料期刊网

材料期刊网

高级检索

为了研究组织对疲劳裂纹扩展行为的影响,对3种不同贝氏体组织钢进行了疲劳裂纹扩展实验,并采用SEM和EBSD等方法对裂纹进行了分析.结果表明,板条贝氏体组织在近门槛区和稳定扩展区阻碍裂纹扩展的能力最强,具有最小的裂纹扩展速率.板条贝氏体组织中的大角度晶界使裂纹更容易发生偏折,导致断口表面粗糙度增加,裂纹扩展受到较强的粗糙度诱导裂纹闭合效应的作用.随着△K的增大,塑性诱导裂纹闭合效应取代粗糙度诱导裂纹闭合效应开始占据主导作用,是板条贝氏体组织中裂纹扩展速率对△K的变化较敏感的原因.

参考文献

[1] PARIS P;ERDOGAN F .A critical analysis of crack propagation laws[J].Journal of Basic Engineering,1963,90:528-534.
[2] ELBER W .Fatigue crack closure under cyclic tension[J].EngFract Mech,1970,21:37-45.
[3] SURECH S.Fatigue of Material[M].北京:国防工业出版社,1991:226-256.
[4] T. Chang;W. Guo .A model for the through-thickness fatigue crack closure[J].Engineering Fracture Mechanics,1999(1):59-65.
[5] POMMIER S;BOMPARD P .Bauschinger effect of alloys and plasticity-induced crack closure:a finite element analysis[J].Fatigue and fracture of engineering materials and structures,2002,23:129-139.
[6] Riemelmoser FO.;Pippan R. .CRACK CLOSURE - A CONCEPT OF FATIGUE CRACK GROWTH UNDER EXAMINATION[J].Fatigue & Fracture of Engineering Materials and Structures,1997(11):1529-1540.
[7] KONJENGBAM Darunkumar Singh;KERN Hauw Khor;IAN Sinclair .Roughness-induced and plasticity-induced fatigue crack closure under single overloads[J].Acta Materialia,2006,54:4393-4414.
[8] Wei Zhang;Yongming Liu.In situ SEM testing for crack closure investigation and virtual crack annealing model development[J].International Journal of Fatigue,2012:188-196.
[9] ZHANG X P;LI J C;WANG C H et al.Predietion of short fatigue crack propagation behavior by characterization of both plasticity and roughness induced crack closures[J].International Journal of Fatigue,2002,24:529-536.
[10] L. Yenning;S.C. Hogg;I. Sinclair .Fatigue crack growth and closure in fine-grained aluminium alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):247-255.
[11] LI Shi-kai;XIONG Bai-qing;HUI Song-xiao et al.Effects of microstructure on fatigue crack growth behavior of Ti-6Al-2Zr-l Mo-1V ELI alloy[J].Materials Characterization,2008,59:397-401.
[12] R. C. Zeng;W. Ke;E. H. Han .Influence of load frequency and ageing heat treatment on fatigue crack propagation rate of as-extruded AZ61 alloy[J].International Journal of Fatigue,2009(3):463-467.
[13] Y. Yu;J. L. Gu;F. L. Shou;L. Xu;B. Z. Bai;Y. B. Liu .Competition mechanism between microstructure type and inclusion level in determining VHCF behavior of bainite/martensite dual phase steels[J].International Journal of Fatigue,2011(3):500-506.
[14] F. Iacoviello .Microstructure influence on fatigue crack propagation in sintered stainless steels[J].International Journal of Fatigue,2005(2):155-163.
[15] XU Tian-han;FENG Yao-rong;SONG Sheng-yin et al.Fatigue crack propagation behavior of steels with different microstructures[J].Materials Science and Engineering A,2012,551:110-115.
[16] ZHONG Yong;XIAO Fu-ren;ZHANG Jing-wu .In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel[J].Acta Materialia,2006,54:435-443.
[17] H. L. Huang;N. J. Ho .The microstructure of the fatigue crack tip in Fe-Al-Mn-0.4%C alloy near the stress intensity threshold[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2000(1/2):235-241.
[18] Diana A. Lados;Diran Apelian .Relationships between microstructure and fatigue crack propagation paths in Al-Si-Mg cast alloys[J].Engineering Fracture Mechanics,2008(3/4):821-832.
[19] Wei Zhang;Yongming Liu.Investigation of incremental fatigue crack growth mechanisms using in situ SEM testing[J].International Journal of Fatigue,2012:14-23.
[20] Akhmad A. Korda;Y. Miyashita;Y. Mutoh .Fatigue crack growth behavior in ferritic-pearlitic steels with networked and distributed pearlite structures[J].International Journal of Fatigue,2007(6):1140-1148.
[21] ALLISON Johne.The measurement of crack closure during fatigue crack growth fracture mechanics[M].Philadelphia:American Society for Testing and Materials,1988:913-933.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%