欢迎登录材料期刊网

材料期刊网

高级检索

采用热模拟压缩试验研究了Ti-40阻燃钛合金在温度900℃~1100℃、应变速率0.01 s-1~10 s-1范围内的高温变形特性,发现合金的流动应力-应变曲线具有应力峰和流变软化特征,在高温、高应变速率下,出现不连续屈服现象.根据动态材料模型(DMM)建立的Ti-40合金加工图大致可以分为5个区域:(1)在温度900℃~950℃,应变速率大于1 s-1时,易发生45°角剪切开裂,出现明显的剪切变形带,功率耗散率达最小值.(2)在温度1000℃~1100℃、应变速率大于1 s-1时,易出现"豆腐渣"式和纵向开裂,大变形时出现局部塑性流动.这2个区域为流动失稳区,在制定热加工工艺时应尽量避免.(3)在高温(≥1050℃)、低应变速率区(≤0.1 s-1),功率耗散率为46%~76%,达到最大值,呈现连续再结晶的特征.(4)在900℃~950℃、应变速率0.01 s-1~0.1 s-1区域内主要发生动态回复,功率耗散率为22%~32%.(5)在温度950℃~1050℃、应变速率0.1 s-1~1 s-1范围为再结晶区域,功率耗散率为36%~50%.结果表明,加工图是控制材料组织演变和优化工艺的一种有效手段.

参考文献

[1] Eyloy D .[J].Jom,1994,6:14.
[2] Pusso P A;Blenkinsop P A.[A].Birmingham:The Institute of Materials,the University Press,1995:675.
[3] 赵永庆.阻燃钛合金[J].稀有金属材料与工程,1996(05):1-6.
[4] Zhao Y Q et al.[J].Material Science and Engineering,2000,A282:153.
[5] Zhao Y Q et al.[J].Material Science and Engineering,1999,A267:167.
[6] 赵永庆,周廉,邓炬.Ti40合金的阻燃性能及其阻燃机理分析[J].稀有金属材料与工程,1999(02):77-80.
[7] 赵永庆,周廉,邓炬.合金元素Cr对钛合金燃烧行为的影响[J].稀有金属材料与工程,1999(03):132-135.
[8] Prasad Y V R K et al.[J].International Migration Review,1998,43(06):243.
[9] Raj R .[J].Metallurgical Transactions,1981,12A:1089.
[10] Prasad Y V R K .[J].Indian Journal of Technology,1990,28:435.
[11] Ravichandran N et al.[J].Metallurgical Transactions,1991,22A:2339.
[12] Padmavardhani D et al.[J].Metallurgical Transactions,1991,22A:2985.
[13] Padmavardhani D et al.[J].Metallurgical Transactions,1991,22A:2993.
[14] Venugopal S et al.[J].Metallurgical Transactions,1992,23A:3093.
[15] Srinivasan N et al.[J].Materials Science and Technology,1992,8:206.
[16] Prasad Y V R K et al.[J].Materials Science and Engineering,1998,A243:82.
[17] Krishna V G et al.[J].J Mater Process Technology,1997,71:377.
[18] Prasad Y V R K et al.[J].Materials Science and Technology,2000,16(05):511.
[19] Balasubrahmanyam V V et al.[J].Materials Science and Technology,2001,17(10):1222.
[20] Zhao Yongqing,Zhou Lian,Deng Ju.High temperature deformation mechanism of Ti-40 burn resistant titanium alloy as-annealing[J].稀有金属(英文版),1999(03):203.
[21] Prasad Y V R K et al.[J].Metallurgical Transactions,1984,15A:1883.
[22] Hofmann U.[J].Intermetallics,1999(07):351.
[23] Semiatin S L et al.[J].Materials Science and Engineering,1999,A263:257.
[24] 杨锦 .[D].西安:西北工业大学,2005.
[25] Balasubrahmanyam VV.;Prasad YVRK. .Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):150-158.
[26] Griffiths P et al.[J].Acta Metalluraica,1972,20:935.
[27] Philippart I et al.[J].Materials Science and Engineering,1998,A243:196.
[28] Sherby O D.[A].New York:Plenum Press,1981:133.
[29] 李强 et al.[J].金属学报,1995,31(11):505.
[30] Kobayashi S et al.Technical Report AFML-TR-70-90[R].USA:University of California CA,1970.
[31] Sivakesavama O et al.[J].Material Science and Engineering,2003,A362:118.
[32] Medeiros S C et al.[J].Materials Science and Engineering,2000,A293:198.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%