采用热模拟压缩试验研究了Ti-40阻燃钛合金在温度900℃~1100℃、应变速率0.01 s-1~10 s-1范围内的高温变形特性,发现合金的流动应力-应变曲线具有应力峰和流变软化特征,在高温、高应变速率下,出现不连续屈服现象.根据动态材料模型(DMM)建立的Ti-40合金加工图大致可以分为5个区域:(1)在温度900℃~950℃,应变速率大于1 s-1时,易发生45°角剪切开裂,出现明显的剪切变形带,功率耗散率达最小值.(2)在温度1000℃~1100℃、应变速率大于1 s-1时,易出现"豆腐渣"式和纵向开裂,大变形时出现局部塑性流动.这2个区域为流动失稳区,在制定热加工工艺时应尽量避免.(3)在高温(≥1050℃)、低应变速率区(≤0.1 s-1),功率耗散率为46%~76%,达到最大值,呈现连续再结晶的特征.(4)在900℃~950℃、应变速率0.01 s-1~0.1 s-1区域内主要发生动态回复,功率耗散率为22%~32%.(5)在温度950℃~1050℃、应变速率0.1 s-1~1 s-1范围为再结晶区域,功率耗散率为36%~50%.结果表明,加工图是控制材料组织演变和优化工艺的一种有效手段.
参考文献
[1] | Eyloy D .[J].Jom,1994,6:14. |
[2] | Pusso P A;Blenkinsop P A.[A].Birmingham:The Institute of Materials,the University Press,1995:675. |
[3] | 赵永庆.阻燃钛合金[J].稀有金属材料与工程,1996(05):1-6. |
[4] | Zhao Y Q et al.[J].Material Science and Engineering,2000,A282:153. |
[5] | Zhao Y Q et al.[J].Material Science and Engineering,1999,A267:167. |
[6] | 赵永庆,周廉,邓炬.Ti40合金的阻燃性能及其阻燃机理分析[J].稀有金属材料与工程,1999(02):77-80. |
[7] | 赵永庆,周廉,邓炬.合金元素Cr对钛合金燃烧行为的影响[J].稀有金属材料与工程,1999(03):132-135. |
[8] | Prasad Y V R K et al.[J].International Migration Review,1998,43(06):243. |
[9] | Raj R .[J].Metallurgical Transactions,1981,12A:1089. |
[10] | Prasad Y V R K .[J].Indian Journal of Technology,1990,28:435. |
[11] | Ravichandran N et al.[J].Metallurgical Transactions,1991,22A:2339. |
[12] | Padmavardhani D et al.[J].Metallurgical Transactions,1991,22A:2985. |
[13] | Padmavardhani D et al.[J].Metallurgical Transactions,1991,22A:2993. |
[14] | Venugopal S et al.[J].Metallurgical Transactions,1992,23A:3093. |
[15] | Srinivasan N et al.[J].Materials Science and Technology,1992,8:206. |
[16] | Prasad Y V R K et al.[J].Materials Science and Engineering,1998,A243:82. |
[17] | Krishna V G et al.[J].J Mater Process Technology,1997,71:377. |
[18] | Prasad Y V R K et al.[J].Materials Science and Technology,2000,16(05):511. |
[19] | Balasubrahmanyam V V et al.[J].Materials Science and Technology,2001,17(10):1222. |
[20] | Zhao Yongqing,Zhou Lian,Deng Ju.High temperature deformation mechanism of Ti-40 burn resistant titanium alloy as-annealing[J].稀有金属(英文版),1999(03):203. |
[21] | Prasad Y V R K et al.[J].Metallurgical Transactions,1984,15A:1883. |
[22] | Hofmann U.[J].Intermetallics,1999(07):351. |
[23] | Semiatin S L et al.[J].Materials Science and Engineering,1999,A263:257. |
[24] | 杨锦 .[D].西安:西北工业大学,2005. |
[25] | Balasubrahmanyam VV.;Prasad YVRK. .Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):150-158. |
[26] | Griffiths P et al.[J].Acta Metalluraica,1972,20:935. |
[27] | Philippart I et al.[J].Materials Science and Engineering,1998,A243:196. |
[28] | Sherby O D.[A].New York:Plenum Press,1981:133. |
[29] | 李强 et al.[J].金属学报,1995,31(11):505. |
[30] | Kobayashi S et al.Technical Report AFML-TR-70-90[R].USA:University of California CA,1970. |
[31] | Sivakesavama O et al.[J].Material Science and Engineering,2003,A362:118. |
[32] | Medeiros S C et al.[J].Materials Science and Engineering,2000,A293:198. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%