欢迎登录材料期刊网

材料期刊网

高级检索

为了深入探讨海洋微生物对碳钢的腐蚀机理,通过细菌的分离鉴定方法,研究了不同碳含量碳钢在自然海水中浸泡不同时间后腐蚀产物中的细菌组成。结果表明不同碳钢每克表面刮取物中需氧菌及兼性厌氧菌的数量均在浸泡时间为91d时达最大值,而硫酸盐还原菌的数量在浸泡时间为184d时达最大值。铁细菌和硫细菌的变化不明显。不同碳钢,除7d实验周期外,随碳含量增加,腐蚀产物中需氧菌及兼性厌氧菌有增加趋势,而硫酸盐还原菌却存在降低趋势。需氧菌及兼性厌氧菌主要由两个菌属的细菌组成,即假单胞菌属和弧菌属,当浸泡时间达1a时,还出现大量黄杆菌。从各个菌属所占比例可见,碳钢腐蚀产物中菌群初期主要由需氧菌组成,随着浸泡时间延长,兼性厌氧菌开始占据主要地位。铁细菌主要是由瑙曼氏菌属和鞘铁菌属组成。不同细菌在生长过程中对氧的需求与消耗及代谢产物的差异,会对碳钢的腐蚀过程产生不同的影响。

Bacterial adhesion and biofilm formation on the surface of carbon steel are common in seawater. The heterogeneous biofilm and the associated bacteria form complex biological systems that impact the physical and chemical characters of the metal/biofilm interface, such as pH, dissolved oxygen, chloride and sulfate, etc., and change the corrosion mechanism of carbon steel. Accordingly, it is important to investigate the bacteria composition in the corrosion product of carbon steel. In this work, the bacteria compositions in the corrosion product of different carbon steel emerged in seawater for different periods were researched by bacteria isolating and identifying methods. The results show that the contents of aerobe and facultative anaerobe reach the maximum value when the corrosion time is 91 d. However, the content of sulfate reducing bacteria reaches the maximum value when the corrosion time is 184 d. The contents of iron bacteria and sulfur bacteria change irregularly. For different carbon steel, except 7 d corrosion time, the contents of aerobe and facultative anaer- obe in biofilm increase with increasing the content of carbon, but that of sulfate reducing bacteria descends. Aerobe and facultative anaerobe mainly compose pseudomonas and vibrio. When the corrosion time is 365 d, fiavobacterium also exists in the corrosion product. The aerobe is predominant in the initial stage of experi- ment and facultative anaerobe is predominant in later stage. The major composition of iron bacteria includes naumanniella and siderocapsa. The different bacteria produce the different metabolic products that influence corrosion process of carbon steel.

参考文献

[1] S. C. Dexter;J. P. LaFontaine .Effect of natural marine biofilms on galvanic corrosion[J].Corrosion: The Journal of Science and Engineering,1998(11):851-861.
[2] Jahn A.;Nielsen PH. .Cell biomass and exopolymer composition in sewer biofilms[J].Water Science and Technology,1998(1):17-24.
[3] J. Mathiyarasu;N. Palaniswamy .Corrosion Resistance of Cupronickels – an Overview[J].Corrosion reviews,2000(1):65-103.
[4] J. P. Busalmen;M. Vazquez;S. R. de Sanchez .New evidences on the catalase mechanism of microbial corrosion[J].Electrochimica Acta,2002(12):1857-1865.
[5] JJ. de Damborenea;A.B. Cristobal;M.A. Arenas .Selective dissolution of austenite in AISI 304 stainless steel by bacterial activity[J].Materials Letters,2007(3):821-823.
[6] 吴进怡,柴柯,肖伟龙,杨雨辉,韩恩厚.25钢在海水中的微生物单因素腐蚀[J].金属学报,2010(06):755-760.
[7] Hwan Gyo JUNG;Jang Yong YOO;Jong Soo WOO .The Microbiologically Influenced Corrosion Behavior of C-Mn Ship Structural Steel with Different Manufacturing Processes[J].ISIJ International,2003(10):1603-1610.
[8] 刘大扬,魏开金,李文军,曹付炎.南海榆林海域环境因素对钢局部腐蚀的影响[J].中国腐蚀与防护学报,2003(04):211-216.
[9] A. B. Cristobal;M. A. Arenas;A. Conde;J. de Damborenea .Corrosion of stainless steels covered by exopolymers[J].Electrochimica Acta,2006(2):546-551.
[10] 王庆飞,宋诗哲.金属材料海洋环境生物污损腐蚀研究进展[J].中国腐蚀与防护学报,2002(03):184-188.
[11] 李会荣,付玉斌,李筠,纪伟尚,徐怀恕.海洋细菌在不同基质表面微生物粘膜中的组成[J].青岛海洋大学学报(自然科学版),2001(03):401-406.
[12] Kurissery R. SREEKUMARI;Kanavillil NANDAKUMAR;Kenji TAKAO .Silver Containing Stainless Steel as a New Outlook to Abate Bacterial Adhesion and Microbiologically Influenced Corrosion[J].ISIJ International,2003(11):1799-1806.
[13] 吴进怡,肖伟龙,柴柯,杨雨辉.热带海洋环境下海水中微生物对45钢腐蚀行为的单因素影响[J].金属学报,2010(01):118-122.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%