欢迎登录材料期刊网

材料期刊网

高级检索

介绍了移动加热器法晶体生长的基本原理及其优缺点,报道了国内外最新研究进展,讨论了不同工艺参数,如磁场、加速坩埚旋转、重力、生长速度、温度等对THM生长晶体的影响,提出了提高THM生长晶体速度的设想,并就未来THM生长晶体的研究方法和发展趋势提出了自己的看法.

参考文献

[1] Liu Y C;Dost S;Lent B et al.A three-dimensional numerical simulation model for the growth of CdTe single crystals by the travelling heater method under magnetic field[J].Journal of Crystal Growth,2003,254:285.
[2] Ye X;Tabarrok B;Walsh D .The influence of thermosolutal convection on CdTe growth by the traveling heater method[J].Journal of Crystal Growth,1996,169:704.
[3] Barz RU.;Salcudean M.;Sabhapathy P. .A NUMERICAL STUDY OF CONVECTION DURING THM GROWTH OF CDTE WITH ACRT[J].Journal of Crystal Growth,1997(3/4):566-577.
[4] N.AUDE;M.COSSETTE .Synthesis of Ultra-High-Purity CdTe Ingots by the Traveling Heater Method[J].Journal of Electronic Materials,2005(6):683-686.
[5] Shiraki H;Funaki M;Ando Y et al.THM growth and characterization of 100 mm diameter CdTe single crystals[J].IEEE Transactions on Nuclear Science,2009,56(04):1717.
[6] Ghaddar CK.;Motakef S.;Gillies DC.;Lee CK. .Numerical simulation of THM growth of CdTe in presence of rotating magnetic fields (RMF)[J].Journal of Crystal Growth,1999(1/2):97-111.
[7] Dost S;Liu Y;Lent B et al.A numerical simulation study for the effect of applied magnetic field in growth of CdTe crystals by the travelling heater method[J].International Journal of Applied Electromagnetics and Mechanics,2003,17:271.
[8] Wald F V;Bell R O .Natural and forced convection during solution growth of CdTe by the traveling heater method (THM)[J].Journal of Crystal Growth,1975,30:29.
[9] Mamiya M;Nagai H;Castillo M;Okutani T .The analysis of CdTe solidification in absence of thermal convection via short-duration microgravity[J].Journal of Crystal Growth,2006(2):209-216.
[10] Benz K W;Babentsov V;Fiederle M .Growth of cadmium telluride from the vapor phase under low gravity conditions[J].Progress Cryst Growth Charact Mater,2004,48/49:189.
[11] Dost S;Liu Y C .Controlling the growth interface shape in the growth of CdTe single crystals by the traveling heater method[J].Comptes Rendus Mecanique,2007,335:323.
[12] Weigel E.;Mullervogt G. .COMPARISON OF BRIDGMAN AND THM METHOD REGARDING THE EFFECT OF IN DOPING AND DISTRIBUTION OF ZN IN CDTE[J].Journal of Crystal Growth,1996(1/4):40-44.
[13] Taguchi T;Fujita S;Inuishi Y .Growth of high-purity ZnTe single crystals by the sublimation travelling heater method[J].Journal of Crystal Growth,1978,45:204.
[14] Chen H;Awadalla SA;Iniewski K;Lu PH;Harris F;Mackenzie J;Hasanen T;Chen W;Redden R;Bindley G .Characterization of large cadmium zinc telluride crystals grown by traveling heater method[J].Journal of Applied Physics,2008(1):14903-1-14903-5-0.
[15] Chen H.;Awadalla S. A.;Mackenzie J.;Redden R.;Bindley G.;Bolotnikov A. E.;Camarda G. S.;Carini G.;James R. B. .Characterization of Traveling Heater Method (THM) Grown <formula formulatype="inline"> <tex>${hbox{Cd}}_{0.9}{hbox{Zn}}_{0.1}{hbox{Te}}$</tex></formula> Crystals[J].IEEE Transactions on Nuclear Science,2007(4):811-816.
[16] Characterization of detector-grade CdZnTe crystals grown by traveling heater method (THM)[J].Journal of Crystal Growth,2010(4):507.
[17] Roy U N;Weiler S;Stein J .Growth and interface study of 2 in diameter CdZnTe by THM technique[J].Journal of Crystal Growth,2010,312:2840.
[18] Wang Y;Kudo K;Inatomi Y et al.Growth and structure of CdZnTe crystal from Te solution with THM technique under static magnetic field[J].Journal of Crystal Growth,2005,275:e1551.
[19] Duffar T;Dusserre P;Giacometti N et al.Dewetting and structural quality of CdTe:Zn:V grown in space[J].Acta Astronautica,2001,48(2-3):157.
[20] Roy U N;Gueorguiev A;Weiller S et al.Growth of spectroscopic grade Cd0.9 Zn0.1 Te:In by THM technique[J].Journal of Crystal Growth,2009,312:33.
[21] Martínez-Tomás M C;Muf(n)oz-Sanjosé V;Reig C .A numerical study of thermal conditions in the THM growth of HgTe[J].Journal of Crystal Growth,2002,243:463.
[22] Gillies D C;Lehoczky S L;Szofran F R et al.Effect of residual accelerations during microgravity directional solidification of mercury cadmium telluride on the USMP-2 mission[J].Journal of Crystal Growth,1997,174:101.
[23] Triboulet R .The travelling heater method (THM) for Hg1-x CdxTe and related materials[J].Progress Cryst Growth Charact Mater,1994,28(1-2):85.
[24] Gille P;Presia M;Bloedner R U et al.Horizontal travelling heater method growth of Hg1-xCdx Te with crucible rotation[J].Journal of Crystal Growth,1993,130(1-2):188.
[25] Triboulet R;Levy-Clement C;Theys B et al.Growth of InSe single crystals by the travelling heater method[J].Journal of Crystal Growth,1986,79:984.
[26] Yip V F S;Wilcox W R .Growth of GaAs,Gax In1-xSb and GaxAl1-x As by the travelling heater method[J].Mater Res Bulle,1976,11(08):895.
[27] Müller G;Neumann G .Tenfold growth rates in the travel ling heater method of GaSb crystals by forced convection on a centrifuge[J].Journal of Crystal Growth,1983,63(01):58.
[28] Weishart H;Danilewsky A N;Benz K W et al.Morphological stability during GaAs solution growth:Liquid phase epitaxy versus the travelling heater method[J].Journal of Crystal Growth,1993,131(1-2):17.
[29] Nagel G;Benz K W .Travelling heater growth of GaSb under reduced gravity during the first spacelab-mission[J].Advances in Space Research,1984,4(05):23.
[30] Meric R A;Dost S;Lent B et al.A finite element model for the growth of ternary alloy GaInSb by the travelling heater method[J].International Journal of Applied Electromagnetics and Mechanics,1999,10:505.
[31] Sell H E;Müller G .Numerical modelling of the growth and composition of GaxIn1-xAs bulk mixed crystals by the travelling heater method[J].Journal of Crystal Growth,1989,97(01):194.
[32] Miyake H;Tajima M;Sngiyama K .Seeded growth of CuGaSe2 single crystals using the travelling heater method[J].Journal of Crystal Growth,1992,125(1-2):381.
[33] Gille P;Rudolph P .Growth of Tl doped PbTe single crystals by the travelling heater method[J].Journal of Crystal Growth,1983,64(03):613.
[34] Gillessen K;Von Münch W .Growth of silicon carbide from liquid silicon by a travelling heater method[J].Journal of Crystal Growth,1973,19(04):263.
[35] Okano Y.;Nishino S.;Ohkubo S.;Dost S. .Numerical study of transport phenomena in the THM growth of compound semiconductor crystal[J].Journal of Crystal Growth,2002(Pt.3):1779-1784.
[36] Yip V F S;Chang C E;Wilcox W R .Heat and mass transfer in the travelling heater method of crystal growth[J].Journal of Crystal Growth,1975,29:69.
[37] Mokri A El;Triboulet R;Lusson A et al.Growth of large,high purity,low cost,uniform CdZnTe crystals by the "cold travelling heater method"[J].Journal of Crystal Growth,1994,138(1-4):168.
[38] Triboulet R;Marfaing Y .CdTe growth by "multipass thm"and "sublimation thm"[J].Journal of Crystal Growth,1981,51(01):89.
[39] Kumar V;Dost S;Durst F .Numerical modeling of crystal growth under strong magnetic fields:An application to the travelling heater method[J].Appl Mathematical Modelling,2007,31:589.
[40] Wang Y;Kudo K;Inatomi Y et al.Growth interface of CdZnTe grown from Te solution with THM technique under static magnetic field[J].Journal of Crystal Growth,2005,284:406.
[41] Rudolph P.;Schentke I.;Grochocki A.;Engel A. .DISTRIBUTION AND GENESIS OF INCLUSIONS IN CDTE AND (CD,ZN)TE SINGLE CRYSTALS GROWN BY THE BRIDGMAN METHOD AND BY THE TRAVELLING HEATER METHOD[J].Journal of Crystal Growth,1995(3/4):297-304.
[42] 刘俊成.ACRT强迫对流对定向凝固过程传热传质的影响[J].自然科学进展,2003(12):1293-1300.
[43] Liu XH.;Zhou YH.;Jie WQ. .Numerical analysis of Cd1-xZnxTe crystal growth by the vertical Bridgman method using the accelerated crucible rotation technique[J].Journal of Crystal Growth,2000(1/2):22-31.
[44] Kitashima T;Liu L J;Kitamura K et al.Numerical analysis of continuous charge of lithium niobate in a double-crucible Czochralski system using the accelerated crucible rotation technique[J].Journal of Crystal Growth,2004,266:109.
[45] Liu Y C;Roux B;Lan C W .Effects of accelerated crucible rotation on segregation and interface morphology for vertical Bridgman crystal growth:Visualization and simulation[J].Journal of Crystal Growth,2007,304:236.
[46] Lan CW .Flow and segregation control by accelerated rotation for vertical Bridgman growth of cadmium zinc telluride: ACRT versus vibration[J].Journal of Crystal Growth,2005(3/4):379-386.
[47] Liu Y C;Roux B;Lana C W .Effects of cycle patterns of accelerated crucible rotation technique (ACRT) on the flows,interface,and segregation in vertical Bridgman crystal growth[J].International Journal of Heat and Mass Transfer,2007,50:5031.
[48] Lent B.;Dost S.;Redden RF.;Liu Y. .Mathematical simulation of the traveling heater method growth of ternary semiconductor materials under suppressed gravity conditions[J].Journal of Crystal Growth,2002(Pt.3):1876-1880.
[49] Nishinaga T;Ge P;Huo C et al.Melt growth of striation and etch pit free GaSb under microgravity[J].Journal of Crystal Growth,1997,174:96.
[50] 李凯,徐自亮.微重力环境和外加磁场对晶体生长中杂质分凝的影响[J].力学进展,1999(02):221.
[51] Favier J J .Macrosegregation-Ⅰ unified analysis during non-steady state solidification[J].Acta Materialia,1981,29(01):197.
[52] Maruyama S.;Ohno K.;Komiya A.;Sakai S. .Description of the adhesive crystal growth under normal and micro-gravity conditions employing experimental and numerical approaches[J].Journal of Crystal Growth,2002(3/4):278-288.
[53] Tulcan-paulescu E;Balint A M;Balint S .The effect of the initial dopant distribution in the melt on the axial compositional uniformity of a thin doped crystal grown in strictly zero-gravity environment by Bridgman-Stockbarger method[J].Journal of Crystal Growth,2003,247:313.
[54] N.AUDET;V.N.GUSKOV;J.H.GREENBERG .Traveling Heater Method Preparation and Composition Analysis of CdTe Ingots[J].Journal of Electronic Materials,2005(6):687-692.
[55] Mochizuki K;Masumoto K;Iwanaga H .MCT single crystal growth by travelling heater method with a mercury reservoir[J].Journal of Crystal Growth,1990,99(1-4):722.
[56] Audet N.;Levicharsky B.;Zappettini A.;Zha M. .Composition Study of CdTe Charges Synthesized by the Travelling Heater Method[J].IEEE Transactions on Nuclear Science,2007(4):782-785.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%