欢迎登录材料期刊网

材料期刊网

高级检索

分别以ZL102、ZL114A、ZL205A及ZL301这4种合金为基体,以SiC纤维为增强体,采用真空气压浸渗法制备SiCf体积分数为40%的连续SiCf/Al复合材料。采用TEM和SEM对不同基体合金的SiCf/Al复合材料界面及断口形貌进行观察,并测试其拉伸强度。结果表明:不同基体合金的连续 SiCf/Al 复合材料界面形貌存在明显差异,其力学性能及断口形貌亦存在较大的差异。其中,SiCf/ZL102复合材料的界面存在细小的针状 Al4C3相,无明显界面层,呈弱界面结合,平均拉伸强度为615.7 MPa,断口纤维拔出现象明显;SiCf/ZL205A复合材料的界面存在块状的Al4C3相及CuAl2相,呈强界面结合,平均拉伸强度为385.1 MPa,断口平齐;SiCf/ZL114A复合材料的界面结合较SiCf/ZL102复合材料的强,平均拉伸强度为475.9 MPa;SiCf/ZL301复合材料的界面存在棒状Al4C3相,大量Mg元素的富集降低界面反应,界面结合强度适中,平均拉伸强度为769.3 MPa,断口出现韧窝,基体改变裂纹横向传播的方向。

By using four different matrix alloys, such as ZL102, ZL114A, ZL205A and ZL301, as substrate, SiCf/Al composite with volume fraction of 40% SiCf were prepared by vacuum pressure impregnation. The interface characteristics and fracture morphology of SiCf/Al composite were observed by TEM and SEM, and the tensile strength was tested. The results show that, the interfaces of continuous SiCf/Al composite of different matrix alloys exist significant differences in their interface morphology, mechanical properties and fracture morphology. Among them, the SiCf/ZL102 composite with tiny needle Al4C3 at the interface and without obvious interface layer, the interfacial bonding is weak, with average tensile strength of 615.7 MPa and obvious fracture fiber pull phenomenon. A large bulk of CuAl2 and Al4C3 phase exist at the interface of the SiCf/ZL205A composite, the interfacial bonding is strong, with average tensile strength of 385.1 MPa, and flush fracture. The interface of SiCf/ZL114A composite is slightly stronger than that of SiCf/ZL102 composite material, the average tensile strength is 475.9 MPa. The rod-like Al4C3 phase exists at the interface to SiCf/ZL301 composite, a large number of Mg element enrichment reduces the interfacial reaction, the average tensile strength is 769.3 MPa, the fracture exists dimple, the matrix changes the direction of horizontal crack.

参考文献

[1] 孙超;沈茹娟;宋旼.有限元模拟SiC增强Al基复合材料的力学行为[J].中国有色金属学报,2012(2):476-484.
[2] 马文锁;赵允岭;冯伟.三维编织复合材料理论研究进展[J].材料科学与工程学报,2006(4):631-636.
[3] 汪星明;邢誉峰.三维编织复合材料研究进展[J].航空学报,2010(5):914-927.
[4] 曾涛;姜黎黎.三维编织复合材料力学性能研究进展[J].哈尔滨理工大学学报,2011(1):34-41,47.
[5] 廖焕文;徐志锋;余欢;王振军.纤维预热温度对真空气压浸渗连续SiC f/Al复合材料致密度和力学性能的影响[J].中国有色金属学报,2014(9):2264-2271.
[6] 万红;杨德明;卓钺;斯永敏;费肖卿;彭平.净成形真空液相压渗法制备碳铝复合材料[J].稀有金属材料与工程,2000(6):411-414.
[7] 武高辉;姜龙涛;陈国钦;张强.金属基复合材料界面反应控制研究进展[J].中国材料进展,2012(7):51-58.
[8] 朱艳;杨延清.SiC纤维增强Ti基复合材料界面反应化学动力学研究[J].纺织高校基础科学学报,2012(4):494-497.
[9] Rawal SP..Interface structure in graphite-fiber-reinforced metal-matrix composites[J].Surface and Interface Analysis: SIA: An International Journal Devoted to the Development and Application of Techniques for the Analysis of Surfaces, Interfaces and Thin Films,20017(7):692-700.
[10] 毛仙鹤;宋永才.聚碳硅烷纤维在1-己炔气氛中不熔化处理制备低氧含量SiC纤维[J].复合材料学报,2007(6):68-76.
[11] 徐志锋;徐燕杰;余欢;王振军;周珍珍.基体合金对连续SiCf/Al复合材料显微组织及拉伸强度的影响[J].中国有色金属学报,2015(2):392-400.
[12] 金鹏;肖伯律;王全兆;马宗义;刘越;李曙.热压烧结温度对SiC颗粒增强铝基复合材料微观组织及力学性能的影响[J].金属学报,2011(3):298-304.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%