欢迎登录材料期刊网

材料期刊网

高级检索

对Ti40合金环材进行600 ℃, 4 h退火处理, 并测试合金在500~550 ℃温度范围不同应力下蠕变性能.结果表明,Ti40合金在500~550 ℃的温度范围的蠕变行为应该分为两个区间, 区间Ⅰ为500~520 ℃温度范围; 区间Ⅱ为535~550 ℃温度范围,在两个温度区间内蠕变本构方程不同.分析认为,在低温区(500~520 ℃)应力对位错的滑移影响较大,热激活控制的位错攀移控制稳态蠕变变形;当温度升高时,扩散对蠕变变形的贡献越来越大,在高温区(535~550 ℃),合金的蠕变可能受自扩散或合金元素的扩散控制.

The creep experiment of Ti40 alloy after annealing treatment at 600 ℃ for 4 h was carried on in a temperature range from 500 ℃ to 550 ℃ with various stresses. The experimental results indicate that the creep behavior can be analyzed in two temperature intervals in this creep temperature range. The first temperature interval is ranging from 500 ℃ to 520 ℃; the second one is ranging from 535 ℃ to 550 ℃. In different temperature intervals, the alloy has different creep constitutive equations. Judging by the analysis, it is deduced that the stress has obvious effect on dislocations glide and climbing controlled by heat activation when the temperature interval was at lower temperatures (500-520 ℃). With increasing temperature, the diffusion has more and more effect on the creep deformation. In higher temperature range (535-550 ℃), the creep deformation may be determined by self-diffusion or alloying element diffusion.

参考文献

[1] 辛社伟,赵永庆,曾卫东,吴欢,杨海瑛,李倩.550℃热暴露对Ti40阻燃钛合金力学性能的影响[J].金属热处理,2007(09):55-58.
[2] 辛社伟,赵永庆,曾卫东,吴欢.Ti40合金550 ℃热暴露组织和性能演化规律的分析与讨论[J].稀有金属材料与工程,2008(03):423-427.
[3] Xin S W;Zhao Y Q;Zeng W D et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2008,477:372.
[4] 辛社伟,赵永庆,曾卫东.Ti40阻燃钛合金热处理的研究[J].金属热处理,2008(05):68-71.
[5] Xin Shewei;Zhao Yongqing;Zeng Weidong .[J].Transactions of Nonferrous Metals Society of China,2007,17(s):526.
[6] Barboza M J R;Neto C Moura;Silva C R M .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2004,369:201.
[7] Barboza M J R;Perez E A C;Medeiros M M et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,428:319.
[8] Bourell D L;Mcqueen H J .[J].Journal of Appl Mater Shaping Techno,1987,15:53.
[9] Dymeny E;Libarati C M .[J].Journal of Materials Science,1968,3:349.
[10] 在α-Ti中固有的自扩散和置换Al原子的扩散[J].Acta Materialia,1997(10):4181-4192.
[11] 辛社伟,赵永庆,曾卫东,吴欢,杨海瑛,李倩.V元素对Ti-V-Cr系阻燃钛合金热强性的影响[J].稀有金属材料与工程,2007(11):2031-2035.
[12] 辛社伟,赵永庆,曾卫东,杨海瑛,吴欢,李倩.Cr元素对Ti-V-Cr系阻燃钛合金热暴露力学性能的影响[J].稀有金属材料与工程,2008(02):232-235.
[13] 王敏敏 .Ti40阻燃钛合金蠕变行为研究[D].东北大学,2002.
[14] 张俊善.材料的高温变形与断裂[M].北京:科学出版社,2006
[15] Sherby O D;Lytton J L;Dorn J E .[J].Acta Metallurgica,1957,5:219.
[16] 辛社伟;赵永庆;曾卫东 .[J].中国有色金属学报,2008,18(07):1216.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%