腐蚀学报(英文), 2014, 26(3): 278-280.
梯度复合MCrAlY涂层的研究进展
1.中国人民解放军海军驻鞍山钢铁集团公司军事代表室 鞍山114000
方氮化硼、3%和10%的鳞片石墨制备了Al2 O3-BN和低碳、高碳Al2 O3-C三种试样,并对比了其常温物理性能、高温强度、抗氧化性、抗热震性和抗渣侵蚀性。结果表明:1)Al2 O3-BN耐火材料的常温、高温物理性能与低碳铝碳材料相差不大,并优于传统高碳铝碳材料;2)Al2 O3-BN 耐火材料具有比碳复合耐火材料更好的抗热震性和抗氧化性,抗渣性与低碳铝碳材料的相当;3)考虑到材料的整体性能,六方氮化硼可以替代石墨作为原料,用于制备综合性能优异的氧化铝质复合耐火材料。","authors":[{"authorName":"梁峰","id":"b940d240-3831-4a79-96f5-d9bbe03debf9","originalAuthorName":"梁峰"},{"authorName":"薛正良","id":"e97e8a89-9c4b-4290-9989-40074857fc37","originalAuthorName":"薛正良"},{"authorName":"赵雷","id":"c21a985c-9d7a-4645-a2d0-726016ddabad","originalAuthorName":"赵雷"},{"authorName":"方伟","id":"4dc2c47a-2c45-4729-901f-a1262ce03bf9","originalAuthorName":"方伟"},{"authorName":"叶林峰","id":"cfcdb909-48e1-4119-920b-adbe7a1d0459","originalAuthorName":"叶林峰"},{"authorName":"雷中兴","id":"1f4b5cd9-8c58-4422-8026-6545c55e3249","originalAuthorName":"雷中兴"}],"doi":"10.3969/j.issn.1001-1935.2014.06.001","fpage":"401","id":"14b450f4-7700-48ab-be2f-bc39d8b7fd82","issue":"6","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"6aaad7d2-65d1-47cf-83b5-a7087734db9e","keyword":"六方氮化硼","originalKeyword":"六方氮化硼"},{"id":"aef9bd2a-c067-4334-888d-36a4beec0419","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"ae3c745d-7691-4a78-87cf-4cc56343002f","keyword":"复合耐火材料","originalKeyword":"复合耐火材料"},{"id":"ae5a057a-e70e-4761-bc63-9dc1c0fafd13","keyword":"含碳耐火材料","originalKeyword":"含碳耐火材料"}],"language":"zh","publisherId":"nhcl201406001","title":"六方氮化硼复合氧化铝耐火材料的性能研究","volume":"","year":"2014"},{"abstractinfo":"为提高酚醛树脂结合铝碳砖常温强度并降低其成本,用碱木素替代部分苯酚,以碱木素含量、催化剂量和缩聚反应时间为因素,以合成的碱木素改性酚醛树(LPF)作结合剂的铝碳砖烘干后的常温抗折强度为考核指标,通过正交试验设计分析各因素对合成LPF的影响程度依次为:碱木素含量>催化剂含量>缩聚反应时间.用逐次回归分析预测合成LPF的最佳工艺条件为:碱木素含量10%(质量分数)、催化剂含量2%(质量分数)、缩聚反应时间2.5h.该最佳工艺合成的LPF结合铝碳砖的常温抗折强度达18.2 MPa,比商业酚醛结合铝碳砖常温抗折强度(16.1 MPa)提高13%,其物理性能也较商业酚醛树脂结合铝碳砖优.","authors":[{"authorName":"王富成","id":"3cd70b56-6d45-4b1b-9bde-b35d6f99f68c","originalAuthorName":"王富成"},{"authorName":"赵雷","id":"29315a0f-2f15-4aaa-a4d8-3a64f9dae3a3","originalAuthorName":"赵雷"},{"authorName":"方伟","id":"c543e1f5-ea4f-402f-a6d6-f4e2e27a5eb3","originalAuthorName":"方伟"},{"authorName":"何漩","id":"71bbe24b-9d49-44e7-8fe0-b3e83ed18837","originalAuthorName":"何漩"},{"authorName":"梁峰","id":"bac52da1-65e6-4f86-ac5c-ec15baba93ee","originalAuthorName":"梁峰"},{"authorName":"陈辉","id":"a5e9a9c7-bdb0-4f65-b0be-43f8daa50e38","originalAuthorName":"陈辉"},{"authorName":"杜星","id":"2c724051-246f-4cd2-9c14-858060527b3a","originalAuthorName":"杜星"},{"authorName":"陈欢","id":"fb5fdfce-2dcb-48d8-ae11-8f93fb3ade13","originalAuthorName":"陈欢"}],"doi":"10.11896/j.issn.1005-023X.2015.08.020","fpage":"91","id":"7e1c8743-51c8-4acf-b51f-26dcabf3ccf6","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0683b0f3-15ee-4540-8980-cc28ed39df1f","keyword":"碱木素","originalKeyword":"碱木素"},{"id":"16954baa-0dea-4a69-b5f1-e54ec412cabc","keyword":"改性酚醛树脂","originalKeyword":"改性酚醛树脂"},{"id":"94d0c5a5-57ee-437f-977b-4d8802baf119","keyword":"铝碳耐火材料","originalKeyword":"铝碳耐火材料"},{"id":"153f704e-86e1-41fc-9c50-150cb14a2705","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"353c4625-a0e1-479f-a139-348187793b2e","keyword":"回归分析","originalKeyword":"回归分析"}],"language":"zh","publisherId":"cldb201508020","title":"碱木素改性酚醛树脂及其在铝碳耐火材料中的应用","volume":"29","year":"2015"},{"abstractinfo":"不加金属催化剂,以碱木素酚醛树脂( LPF)和硅粉作为原料在低温条件下合成SiC纳米线。利用SEM、TEM、XRD表征样品的形貌及显微结构,用热力学方法分析反应条件对SiC纳米线生长的影响。结果表明,SiC纳米线在1100℃左右开始生长,其由气-液-固生长机理控制,同时其生成温度比用商业酚醛树脂作为原料低。生成的SiC纳米线的直径为30~100 nm并沿晶面的[111]方向生长。碱木素酚醛树脂中的无机盐在热解炭化过程中原位形成熔盐并起着液相催化剂球滴的作用,促进SiC纳米线的生长,并提出合成SiC纳米线的生长机理模型。","authors":[{"authorName":"王富成","id":"bd344504-b4a0-4fac-9515-4cb3e02dde5e","originalAuthorName":"王富成"},{"authorName":"赵雷","id":"f285806f-1500-432c-a156-f8f09648c1a8","originalAuthorName":"赵雷"},{"authorName":"方伟","id":"4301afce-275f-49ae-a30e-352d02bfa263","originalAuthorName":"方伟"},{"authorName":"何漩","id":"279691e4-30ab-42c1-96b1-19db2962f15a","originalAuthorName":"何漩"},{"authorName":"梁峰","id":"4e6646a4-c8cb-4ffd-bef7-2ed7f226a584","originalAuthorName":"梁峰"},{"authorName":"陈辉","id":"72694deb-e58b-4531-9aea-95546014aac2","originalAuthorName":"陈辉"},{"authorName":"陈欢","id":"7187a102-2a4b-4da1-a99b-ad6c8ee67976","originalAuthorName":"陈欢"},{"authorName":"杜星","id":"ea1c6b65-9939-41b8-9bd2-14701a1e5d87","originalAuthorName":"杜星"}],"doi":"10.1016/S1872-5805(15)60187-1","fpage":"222","id":"80011ae3-680b-4975-9ff0-b88c4b22542f","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"24a73f45-beda-4a5d-aa44-fe050cc46e16","keyword":"SiC纳米线","originalKeyword":"SiC纳米线"},{"id":"3738d547-e388-40dd-aa7d-c6641c873d40","keyword":"生长机理","originalKeyword":"生长机理"},{"id":"be6e3ee4-d878-43a9-ac30-5c9ff18b4ac8","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"9b6c9edf-6d62-4ad4-9f32-9d735da249c4","keyword":"原位熔盐","originalKeyword":"原位熔盐"}],"language":"zh","publisherId":"xxtcl201503004","title":"热解炭中原位熔盐催化SiC纳米线的合成及表征","volume":"","year":"2015"},{"abstractinfo":"以木质素磺酸钙为原料,部分替代苯酚,合成具有良好水溶性的木质素改性酚醛树脂( LPF),并在其合成过程中将催化剂前驱体六水硝酸镍(NNH)加入到LPF体系中制备出硝酸镍复合木质素改性酚醛树脂(NLPF),经200°C×24 h固化后,于还原气氛下经800°C×3 h、1000°C×3 h、1200°C×3 h炭化处理,制得NLPF热解炭。探讨催化剂Ni在NLPF复合体系中的分散性,采用X射线衍射仪、激光拉曼光谱仪、场发射扫描电子显微镜、高分辨透射电子显微镜分析NLPF热解炭的晶体结构及显微结构。结果表明,催化剂Ni均匀分散在NLPF复合体系中;NLPF热解过程中NNH被还原成单质Ni,其催化作用使热解炭中生成了结晶程度高的直线型碳纳米管,且呈网状相互交织,均匀的排布在热解炭气孔中;随着NNH添加量的增加,NLPF热解炭的石墨化程度提高,碳纳米管的生成量和直径增加;升高炭化温度同样可以增加碳纳米管的生成量,并使其长度增长。","authors":[{"authorName":"方伟","id":"e9edaf3a-83bc-434e-8472-f040c5b636e1","originalAuthorName":"方伟"},{"authorName":"赵雷","id":"e4841cfe-f92b-42d1-8cc5-fd24bd292bee","originalAuthorName":"赵雷"},{"authorName":"梁峰","id":"b873d97d-83b5-4ef1-b4b8-d9494b2337ee","originalAuthorName":"梁峰"},{"authorName":"陈辉","id":"0fee91a6-f514-46f8-a2bd-49fe7eafb40e","originalAuthorName":"陈辉"},{"authorName":"龚仕顺","id":"8910e5de-6adb-4bd4-ab5b-d3a69670c3c3","originalAuthorName":"龚仕顺"},{"authorName":"雷中兴","id":"5d987b6f-e7d7-4153-97b0-970f586b9e53","originalAuthorName":"雷中兴"},{"authorName":"陈欢","id":"3ea344eb-21de-40d7-913e-ed27b8c6259d","originalAuthorName":"陈欢"}],"doi":"","fpage":"327","id":"17c84901-8f62-42cb-807e-f2ffa70158ff","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"2653752e-c21a-458e-bb36-dd1e5364b7b4","keyword":"木质素改性酚醛树脂","originalKeyword":"木质素改性酚醛树脂"},{"id":"52151b14-3443-4ed7-8ec8-6fe867258c9e","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"f0d7ef20-e4e3-46cb-bf80-115ba476f0e3","keyword":"热解炭","originalKeyword":"热解炭"},{"id":"0a8d3e56-b7e6-419b-9476-310fa09c50b0","keyword":"碳纳米管","originalKeyword":"碳纳米管"}],"language":"zh","publisherId":"xxtcl201504008","title":"硝酸镍复合木质素改性酚醛树脂的热解炭结构演变","volume":"","year":"2015"},{"abstractinfo":"为了改善刚玉-尖晶石浇注料的抗热震性,以板状刚玉、烧结镁铝尖晶石、活性α-Al2O3微粉为主要原料,以铝酸钙水泥为结合剂,添加十二烷基苯环酸钠和水性高分子泡沫为造孔剂,制备了含多孔基质的刚玉-尖晶石浇注料.研究了泡沫加入量(2 kg的原料中分别加入0、100、150、200、250、300 mL泡沫)对刚玉-尖晶石浇注料1 550℃烧后试样的常温物理性能、抗渣渗透性能、抗热震性及显微结构的影响.结果表明:1)引入一定量的泡沫,耐火浇注料基质中可形成分布均匀、圆球形的单分散气孔,但当泡沫加入量为300 mL时,其基质部分的圆球形的单分散气孔减少,并且基质部分结构疏松;2)当泡沫加入量为0、100、150、200 mL时,对试样的抗渣性和常温物理性能无显著影响,但加入量为250、300 mL,会明显降低试样的抗渣性和力学性能;3)多孔基质结构有效地阻止了裂纹的生长,改变了裂纹的扩展方向,提高了其抗热震性.综合考虑刚玉-尖晶石浇注料的各项性能,泡沫的合适加入量为2 kg的原料中加入200 mL.","authors":[{"authorName":"陈欢","id":"f6a50f7c-234e-4012-8e21-6131d129575e","originalAuthorName":"陈欢"},{"authorName":"赵雷","id":"e68b6e4b-8547-457f-98f8-1253af70a852","originalAuthorName":"赵雷"},{"authorName":"梁峰","id":"b6f7ef97-92e1-4e97-a9d8-61a16997ae8e","originalAuthorName":"梁峰"},{"authorName":"杜星","id":"b7a0d9f8-d646-46d5-8150-5d4e2e157a30","originalAuthorName":"杜星"},{"authorName":"陈辉","id":"89b11aac-b24d-426e-a098-9d764410c588","originalAuthorName":"陈辉"},{"authorName":"方伟","id":"5fd1184a-cbbd-4a83-b72f-a4e42e07ece5","originalAuthorName":"方伟"},{"authorName":"陈玉龙","id":"ea48a1c9-a224-498e-b4c2-1f8a9be9fc03","originalAuthorName":"陈玉龙"}],"doi":"10.3969/j.issn.1001-1935.2014.01.005","fpage":"22","id":"552aa389-27b9-413b-815b-1e62903dd290","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"589adddb-2b9c-4c3c-881b-3d8671d5bcbf","keyword":"刚玉-尖晶石浇注料","originalKeyword":"刚玉-尖晶石浇注料"},{"id":"f3a2016a-1aaa-4ec9-aa64-167829084b3e","keyword":"泡沫","originalKeyword":"泡沫"},{"id":"61f42427-88f5-40c2-8652-e3ac19d2331e","keyword":"多孔基质","originalKeyword":"多孔基质"},{"id":"410e1e08-2123-4911-94c5-ccf94f57b274","keyword":"抗热震性","originalKeyword":"抗热震性"}],"language":"zh","publisherId":"nhcl201401005","title":"引入泡沫对含多孔基质的刚玉-尖晶石浇注料性能的影响","volume":"48","year":"2014"},{"abstractinfo":"以稻壳灰为主要原料,羧甲基纤维素钠和黏土为结合剂和增塑剂,采用传统机压方法,制备了稻壳灰基多孔陶瓷.采用扫描电子显微镜(SEM)和X射线衍射(XRD)等对样品进行表征.研究了成型压力以及烧成温度对样品性能的影响.结果表明,以稻壳灰为主要原料,采用半干法机压成型,可以制备体积密度0.6~1.1 g/cm3、显气孔率50%~75%和耐压强度2.5~12.5 MPa的高性能稻壳灰基多孔陶瓷.当成型压力在5~20 MPa时,体积密度随压力增加显著增大,当压力大于40 MPa后体积密度增加不明显.稻壳灰基多孔陶瓷内孔隙组成主要有两种方式,其一为原料颗粒间堆积形成的孔隙,另一种为稻壳本征多孔结构.随着成型压力增加至25MPa,稻壳的本征织构也开始坍塌或破坏.烧成温度对稻壳灰基多孔陶瓷的体积密度影响不大,但可以提高陶瓷的耐压强度.当成型压力为90 MPa、烧成温度在1400℃时,样品的体积密度为1.1 g/cm3,耐压强度可达12.5 MPa.","authors":[{"authorName":"陈辉","id":"232da207-5c0f-4ec0-b197-2ea10ce625df","originalAuthorName":"陈辉"},{"authorName":"王玺堂","id":"ef2565a7-86a5-4c93-8c1c-c80741261543","originalAuthorName":"王玺堂"},{"authorName":"赵雷","id":"b4fe277b-e666-46c1-920e-4c96bea95ae1","originalAuthorName":"赵雷"},{"authorName":"梁峰","id":"9ed51525-6c40-4d08-8b7e-828deb3aaf91","originalAuthorName":"梁峰"},{"authorName":"方伟","id":"a4d7b319-1de4-4233-b283-d9aaff309c88","originalAuthorName":"方伟"},{"authorName":"杜星","id":"51a81be7-c4bf-4c07-a4a6-96b921e11480","originalAuthorName":"杜星"},{"authorName":"陈欢","id":"8063a6e4-e818-4b4a-ac3e-64d25b9fbd64","originalAuthorName":"陈欢"}],"doi":"","fpage":"122","id":"ac223860-41dc-4ff8-8e21-4042492789f6","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"aef82373-74ba-43bc-a77b-06b8d46a6596","keyword":"稻壳灰","originalKeyword":"稻壳灰"},{"id":"8048f2de-7fe8-4859-96bc-8ce44c87fc88","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"},{"id":"f0f01213-2046-4bbf-917b-dadde9a8dee6","keyword":"本征多孔结构","originalKeyword":"本征多孔结构"},{"id":"44e8ac27-7a22-4ccf-8a29-d012a80c3a98","keyword":"显微结构","originalKeyword":"显微结构"}],"language":"zh","publisherId":"cldb201408030","title":"稻壳灰基多孔陶瓷的制备及其表征","volume":"28","year":"2014"},{"abstractinfo":"为了降低酚醛树脂的生产成本并提高其低温结合强度,以木质素磺酸钙为原料部分替代苯酚,以氢氧化钠为催化剂,合成了木质素改性酚醛树脂(LPF),并将其作为结合剂用于镁碳砖的制备,通过研究不同木质素磺酸钙用量(其质量分数分别为10%、20%、30%、40%、50%)、不同催化剂用量(外加质量分数分别为1%、2%、3%、4%、5%)以及不同反应时间(分别为1、1.5、2、2.5、3 h)合成的LPF对镁碳砖200℃24 h烘后常温性能的影响,优化了LPF的合成工艺条件,同时对比了LPF结合和传统酚醛树脂结合镁碳砖于200℃24 h烘后和1200℃3 h处理后的常温物理性能和高温抗折强度。结果表明,适于制备镁碳砖的LPF的最佳合成工艺条件为:木质素磺酸钙质量分数为30%,催化剂质量分数为1%,反应时间为2 h。用最佳工艺合成的LPF制备的镁碳砖,经200和1200℃分别处理后的体积密度为2.84和2.82 g·cm-3,显气孔率为9.6%和14.6%,抗折强度为17.8和6.4 MPa ,耐压强度为72.3和48.7 MPa;1400℃下的高温抗折强度为7.3 MPa。与传统酚醛树脂结合镁碳砖相比,其性能均有所提高。","authors":[{"authorName":"方伟","id":"e1981202-27bb-4df0-9df2-854a72d75d9c","originalAuthorName":"方伟"},{"authorName":"赵雷","id":"8b8a4305-c440-4682-9778-69c3cd8b2c7b","originalAuthorName":"赵雷"},{"authorName":"梁峰","id":"46daf3d8-be7c-4bfb-8ce4-8c50cb95f37e","originalAuthorName":"梁峰"},{"authorName":"雷中兴","id":"b4f66ce0-149b-46df-806b-86a72f70e798","originalAuthorName":"雷中兴"},{"authorName":"陈辉","id":"d0d19536-0fe6-43b0-b783-f17f6bd24a74","originalAuthorName":"陈辉"},{"authorName":"陈欢","id":"ecd575f1-5115-4d64-8712-12d8750f5a5d","originalAuthorName":"陈欢"}],"doi":"10.3969/j.issn.1001-1935.2014.02.002","fpage":"84","id":"050c6d43-3606-41fa-8bd9-de2396826533","issue":"2","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"37c91040-0322-457f-bd24-00d0de0acff4","keyword":"木质素磺酸钙","originalKeyword":"木质素磺酸钙"},{"id":"3ad3df5f-4b18-49e8-a98c-779673d8c2fd","keyword":"改性酚醛树脂","originalKeyword":"改性酚醛树脂"},{"id":"ff284cb0-8ea6-49d0-abde-19431f5d175c","keyword":"镁碳砖","originalKeyword":"镁碳砖"},{"id":"93ce7496-1109-4a4a-a340-9f15b4607008","keyword":"强度","originalKeyword":"强度"}],"language":"zh","publisherId":"nhcl201402002","title":"木质素改性酚醛树脂结合镁碳砖的研究","volume":"","year":"2014"},{"abstractinfo":"综述了酚醛树脂在镁碳砖、铝碳砖、中间包干式料、转炉修补料、高炉压入料、高炉无水炮泥等不同类耐火材料中的应用及其研究现状;并针对酚醛树脂在耐火材料应用和及其研究中存在的问题及缺陷指出,利用催化反应改善树脂残炭的结构与性能,以及合成新型的网络互穿的高性能树脂,是酚醛树脂作为含碳耐火材料用结合剂的研究热点和发展方向.","authors":[{"authorName":"方伟","id":"a8eca4af-28b1-4794-a494-5bec444576bc","originalAuthorName":"方伟"},{"authorName":"赵雷","id":"b16e4e70-3b18-4ee0-a5ab-e7781d5afc6a","originalAuthorName":"赵雷"},{"authorName":"于晓燕","id":"060a100b-708f-4107-9383-8d2cd2cc52af","originalAuthorName":"于晓燕"},{"authorName":"李亚伟","id":"ddc4468d-25e2-4dd2-80b4-4c23997adbc2","originalAuthorName":"李亚伟"},{"authorName":"李远兵","id":"10d10853-9b98-4c62-9cad-5aca3e0c8b16","originalAuthorName":"李远兵"},{"authorName":"李淑静","id":"3962335c-4ba6-425d-8579-7192dd2989ce","originalAuthorName":"李淑静"}],"doi":"10.3969/j.issn.1001-1935.2013.04.017","fpage":"303","id":"09c873ef-18d6-47dd-b982-4ebcf779ae54","issue":"4","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"2ca9ad2b-5a11-4a44-b17c-4b4ff52e142e","keyword":"酚醛树脂","originalKeyword":"酚醛树脂"},{"id":"450131a5-100f-48d5-a5c8-9ee485880f2d","keyword":"耐火材料","originalKeyword":"耐火材料"},{"id":"146bad5a-392a-48d4-b2dc-b5e841e7e087","keyword":"结合剂","originalKeyword":"结合剂"}],"language":"zh","publisherId":"nhcl201304017","title":"酚醛树脂在耐火材料中的应用及其研究现状","volume":"47","year":"2013"},{"abstractinfo":"利用双螺杆挤出机制备了聚甲醛(POM)/热塑性聚氨酯弹性体(TPU)共混物,研究了共混物的流动性能、力学性能及熔融结晶行为.结果表明,两种TPU对POM均有明显的增韧效果,TPU1的增韧效果更好,当POM/TPU1的比例为100/18时,共混物的冲击强度提高了115%.","authors":[{"authorName":"孟永智","id":"23c3c2f6-15a0-469e-b0a7-0a748a6bf0cf","originalAuthorName":"孟永智"},{"authorName":"方伟","id":"afdd8d3a-7709-4cc6-8e52-75775e09657d","originalAuthorName":"方伟"},{"authorName":"孙亚楠","id":"8f58e61b-d7d4-4cc6-b25d-440978d1cd2f","originalAuthorName":"孙亚楠"},{"authorName":"杨玮婧","id":"5052c0b3-5dc3-42f6-80d1-6d1dbc072d4f","originalAuthorName":"杨玮婧"},{"authorName":"田广华","id":"18de55ec-aa90-483e-bbc9-23340e4e2c32","originalAuthorName":"田广华"}],"doi":"","fpage":"45","id":"17f5a3b5-e15e-4049-9e16-191943a64b32","issue":"5","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"0a6a05b3-a2db-4ed9-974a-45ec40403e68","keyword":"聚甲醛","originalKeyword":"聚甲醛"},{"id":"eb0b1085-204e-4e9e-b6cc-a29250a978d9","keyword":"聚氨酯弹性体","originalKeyword":"聚氨酯弹性体"},{"id":"79d963bb-73e6-4426-94b5-3c91b07c6bb3","keyword":"增韧","originalKeyword":"增韧"},{"id":"7d8b653a-763e-4b82-8038-e0c76f770b6d","keyword":"相容剂","originalKeyword":"相容剂"},{"id":"efa7109c-036e-447d-92cf-98f67228effe","keyword":"相容性","originalKeyword":"相容性"}],"language":"zh","publisherId":"hccllhyyy201505011","title":"聚氨酯弹性体增韧聚甲醛改性研究","volume":"44","year":"2015"},{"abstractinfo":"采用慢应变速率拉伸试验(SSRT)研究了温度对X70管线钢在库尔勒土壤模拟溶液中应力腐蚀开裂(SCC)行为的影响,并利用扫描电镜分析了不同温度下的拉伸断口形貌.结果表明:温度对X70管线钢在库尔勒土壤模拟溶液中的SCC行为影响较大且很复杂;在低温下(20~30℃),X70管线钢在库尔勒土壤模拟溶液中的SCC敏感性较大,机理为阳极溶解与氢致开裂混合机理;在50℃以上的高温区,X70管线钢的SCC敏感性也较大,机理为腐蚀膜导致的断裂;在40℃附近,X70管线钢的应力腐蚀以溶解形式为主,SCC敏感性较低.","authors":[{"authorName":"张亮","id":"501f19fc-63eb-4ca6-9849-5f07d85e79f2","originalAuthorName":"张亮"},{"authorName":"李晓刚","id":"d0f9d90c-6b47-41ed-8e9a-9420eccc4192","originalAuthorName":"李晓刚"},{"authorName":"杜翠薇","id":"98e41d99-e8d4-46b7-a560-3b9afebe0c3b","originalAuthorName":"杜翠薇"},{"authorName":"方伟","id":"48c6b926-1632-4fd4-8abe-1427d8b54248","originalAuthorName":"方伟"}],"doi":"","fpage":"10","id":"1964205d-a7f2-4e83-8a26-f82b639ed189","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"13029b7b-849f-4aec-9c3c-bef7356cca49","keyword":"X70管线钢","originalKeyword":"X70管线钢"},{"id":"460675b3-1d36-4453-969a-81e4c078e25f","keyword":"应力腐蚀开裂","originalKeyword":"应力腐蚀开裂"},{"id":"72cd9150-a542-480e-8af7-5441a5d3c5fc","keyword":"温度","originalKeyword":"温度"},{"id":"712f9aef-5197-4734-9ecf-c7eaad55a820","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"jxgccl200906003","title":"温度对X70管线钢在碱性溶液中应力腐蚀开裂行为的影响","volume":"33","year":"2009"}],"totalpage":460,"totalrecord":4599}