欢迎登录材料期刊网

材料期刊网

高级检索

采用层层自组装的方法,在羟基化和硅烷偶联剂处理的医用钛合金表面交替组装海藻酸钠和壳聚糖,再通过酰胺化反应接枝酪蛋白磷酸肽,在医用钛合金表面形成具有仿生矿化能力的聚电解质复合薄膜.采用XPS、ATR-FTIR、FESEM以及XRD对样品表面进行表征,并将各组样品放入模拟体液中考察仿生矿化沉积能力.结果表明:在医用钛合金表面成功制备了聚电解质层接枝酪蛋白磷酸肽复合薄膜,经仿生矿化的各组样品表面均有羟基磷灰石沉积,聚电解质层组表面具有纳米多孔结构以及羧基和羟基活性基团,接枝酪蛋白磷酸肽后表面又具有磷酸活性基团,因此最终形成的复合薄膜羟基磷灰石沉积最为致密,表明其生物矿化能力明显增强.

参考文献

[1] Yamada M;Ueno T;Tsukimura N et al.Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants[J].Int J Nanomedicine,2012,7:859.
[2] 朱康平,祝建雯,曲恒磊.国外生物医用钛合金的发展现状[J].稀有金属材料与工程,2012(11):2058-2063.
[3] Hsin-Yi Lin;Jing-Huei Chen .Osteoblast differentiation and phenotype expressions on chitosan-coated Ti-6Al-4V[J].Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides,2013(2):618-626.
[4] Rakngarm, Achariya;Mutoh, Yoshiharu .Electrochemical depositions of calcium phosphate film on commercial pure titanium and Ti-6Al-4V in two types of electrolyte at room temperature[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2009(1):275-283.
[5] David M. Dohan Ehrenfest;Paulo G. Coelho;Byung-Soo Kang .Classification of osseointegrated implant surfaces: materials, chemistry and topography[J].Trends in biotechnology,2010(4):198-206.
[6] Ludovic Richert;Philippe Lavalle;Elisabeth Payan;Xiao Zheng Shu;glenn D.Prestwich;Jean-Francois Stoltz;Pierre Schaaf;Jean-Claude Voegel;Catherine Picart .Layer by Layer Buildup of Polysaccharide Films:Physical Chemistry and Cellular adhesion Aspects[J].Langmuir: The ACS Journal of Surfaces and Colloids,2004(2):448-458.
[7] Choi J;Konno T;Takai M .Controlled drug release from multilayered phospholipid polymer hydrogel on titanium alloy surface.[J].Biomaterials,2009(28):5201-5208.
[8] Ming-Yue Wu;Ning Chen;Lai-Kui Liu .Chitosan/Alginate Multilayer Scaffold Encapsulating Bone Marrow Stromal Cells In Situ on Titanium[J].Journal of Bioactive and Compatible Polymers,2009(4):301-315.
[9] Qiao, P.;Wang, J.;Xie, Q.;Li, F.;Dong, L.;Xu, T. .Injectable calcium phosphate-alginate-chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo[J].Materials science & engineering, C. Materials for Biogical applications,2013(8):4633-4639.
[10] Yang Y;He Q;Duan L;Cui Y;Li JB .Assembled alginate/chitosan nanotubes for biological application[J].Biomaterials,2007(20):3083-3090.
[11] 王琳,卜银忠,王金清,杨生荣,刘斌.壳聚糖-酪蛋白磷酸肽修饰钛合金表面的成骨细胞黏附与增殖[J].中国组织工程研究与临床康复,2011(21):3811-3814.
[12] Tulipano G;Bulgari O;Chessa S;Nardone A;Cocchi D;Caroli A .Direct effects of casein phosphopeptides on growth and differentiation of in vitro cultured osteoblastic cells (MC3T3-E1).[J].Regulatory Peptides,2010(1/3):168-174.
[13] Kokubo T;Takadama H .How useful is SBF in predicting in vivo bone bioactivity?[J].Biomaterials,2006(15):2907-2915.
[14] 韩凉,张胜楠,朱山成.海藻酸钠/壳聚糖引导酸蚀离体牙在模拟体液中生成羟基磷灰石晶体的实验研究[J].山东医药,2012(35):61-62.
[15] Ouyang W;Zhu J .Catalyst-free synthesis of macro-scale ZnO nanonail arrays on Si substrate by simple physical vapor deposition[J].Materials Letters,2008,62(17):2557.
[16] Kawashita M;Nakao M;Minoda M;Kim HM;Beppu T;Miyamoto T;Kokubo T;Nakamura T .Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid.[J].Biomaterials,2003(14):2477-2484.
[17] Zengjie Fan;Jinqing Wang;Zhaofeng Wang .Casein Phosphopeptide-Biofunctionalized Graphene Biocomposite for Hydroxyapatite Biomimetic Mineralization[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2013(20):10375-10382.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%