目的:研究一种复合清洗剂对铜膜表面腐蚀缺陷的控制效果。方法通过单因素实验优化无磨料复合清洗剂组成和相应的清洗工艺,并通过研究优化的清洗条件对不同类型铜晶圆表面划伤、残留颗粒的清洗效果,验证该清洗剂的清洗性能。结果优化的清洗剂组分和清洗工艺为:金属离子螯合剂体积分数0.025%,表面活性剂体积分数0.1%;清洗剂温度30℃,清洗剂流量3 L/ min。优化的复合清洗剂能大幅度降低铜膜表面划伤和表面粗糙度,对铜膜表面残留的颗粒有较强的去除作用。结论优化的复合清洗剂能够对不同类型铜晶圆表面缺陷进行大幅度的修正,研究成果对提高大规模生产中晶圆的成品率有一定的指导作用。
Objective To study the controlling effect of a composite cleaning agent on the surface corrosion defects of copper film. Methods Through the single factor experiment, the composition ratio and corresponding cleaning process of the abrasive free composite cleaning agent were optimized. According to the cleaning effect of the scratches and the residual particles on the copper film surface, the cleaning effect of the cleaning agent mentioned above was verified. Results It was confirmed that the copper film achieved the lowest corrosion rate and surface roughness when the volume fraction of metal ion chelating agent was 0. 025% , the surfactant concentration was 0. 1% , the cleaning agent temperature was 30 ℃ , and the cleaning agent flow rate was 3 L/ min. The cleaning agent could reduce the values of the scratches and the surface roughness of the copper films, it also showed strong inhibito-ry effect on the residual particle number of the copper films. Conclusion The optimized composite cleaning agent showed significant modification effects for different types of copper wafer surface defects, which can play a guiding role in improvement of the wafer yield in mass production.
参考文献
[1] | Gao Baohong,Liu Yuling,Wang Chenwei,Zhu Yadong,Wang Shengli,Zhou Qiang,Tan Baimei.A new cleaning process for the metallic contaminants on a post-CMP wafer's surface[J].半导体学报,2010(10):139-142. |
[2] | Wei Zhang;Xinchun Lu;Yuhong Liu;Guoshun Pan;Jianbin Luo .Inhibitors For Organic Phosphonic Acid System Abrasive Free Polishing Of Cu[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2009(7):4114-4118. |
[3] | Ji Chul Yang;Dong Won Oh;Gae Won Lee;Chang Lyung Song;Taesung Kim .Step height removal mechanism of chemical mechanical planarization (CMP) for sub-nano-surface finish[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2010(3/4):505-510. |
[4] | 黄俊学,张晖,杨锦瑜.绿色环保型BFe10-1-1铁白铜化学抛光工艺研究[J].表面技术,2011(05):80-84. |
[5] | 王吉翠,邓乾发,周兆忠,李振,袁巨龙.蓝宝石晶片机械化学研磨抛光新方法研究[J].表面技术,2011(05):101-103. |
[6] | 彭进,夏琳,邹文俊.化学机械抛光液的发展现状与研究方向[J].表面技术,2012(04):95-98. |
[7] | Seunghee Oh;Jongwon Seok .An integrated material removal model for silicon dioxide layers in chemical mechanical polishing processes[J].Wear,2009(7/8):839-849. |
[8] | CHRISTOPHER M S;DIPANKAR R .Electrochemical Cha-racterization of Surface Complexes Formed on Cu and Ta in Succinic Acid Based Solutions Used for Chemical Mechani-cal Planarization[J].Applied Surface Science,2010,256:2583-2595. |
[9] | 韩东锐,王戈,贾思洋,李超.新型钛铜复合管在流动海水中的腐蚀行为[J].装备环境工程,2012(04):1-3,7. |
[10] | 陈翔峰,穆振军,许春生,任润桃.铜及铜合金在厦门海域实海暴露腐蚀规律研究[J].装备环境工程,2013(02):1-3,24. |
[11] | D. Ng;M. Kulkarni;J. Johnson;A. Zinovev;D. Yang;H. Liang .Oxidation and removal mechanisms during chemical-mechanical planarization[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2007(7/12):1477-1483. |
[12] | Kristin G. Shattuck;Jeng-Yu Lin;Paula Cojocaru;Alan C. West .Characterization of phosphate electrolytes for use in Cu electrochemical mechanical planarization[J].Electrochimica Acta,2008(28):8211-8216. |
[13] | Li Yan,Liu Yuling,Niu Xinhuan,Bu Xiaofeng,Li Hongbo,Tang Jiying,Fan Shiyan.Application of a macromolecular chelating agent in chemical mechanical polishing of copper film under the condition of low pressure and low abrasive concentration[J].半导体学报(英文版),2014(01):146-150. |
[14] | 李炎,孙鸣,牛新环,刘玉岭,何彦刚,李海龙,王傲尘,李洪波.Removal of residual CuO particles on the post CMP wafer surface of multi-layered copper[J].半导体学报(英文版),2014(04):157-164. |
[15] | 田晓东,王利捷,郑文鹏.TC4钛合金表面辉光离子渗Mo渗S复合处理涂层的组织和摩擦学性能[J].表面技术,2013(02):4-6. |
[16] | 陈辉,胡元中,王慧,王文中.粗糙表面分形特征的模拟及其表征[J].机械工程学报,2006(09):219-223. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%