欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleeble3180D型热模拟试验机对热挤压态FGH96合金在变形温度1020~1140℃,应变速率0.001~1.0 s?1进行热压缩实验,分析真应力?真应变曲线,绘制热加工图。并针对热挤压态粉末冶金高温合金FGH96在热压缩温度低于1080℃时的开裂现象,利用热模拟压缩实验方法,确定在变形温度为1050℃、应变速率为0.001~1.0 s?1的热压缩变形过程中的开裂临界应变量,观察变形后试样的裂纹形貌和显微组织,并利用有限元分析方法对热压缩变形过程进行模拟。结果表明:试样中部位置受拉应力作用沿着变形方向产生鼓形变形,当达到临界应变量后,产生呈沿晶断裂的宏观裂纹,并且随着应变速率的减小,裂纹产生的临界应变量逐渐减小;在低应变速率条件下,在宏观裂纹产生之前,试样内部晶粒之间出现了微观开裂的现象,并造成应力下降。

The hot compression tests were carried out for hot extruded FGH96 alloy in the temperature range of 1020?1140 ℃ and strain rate range of 0.001?1.0 s?1 by using Gleeble 3180D thermal simulation system. The true stress?true strain curves were analyzed, and the processing maps were developed. And for the phenomenon that the hot extruded powder metallurgy superalloy FGH96 cracked severely at the hot compression temperatures below 1080℃, the critical strains of cracking were determined during hot compression at deformation temperature of 1050 ℃ and strain rates of 0.001?1.0 s?1. The fractures and microstructures of deformed specimens were observed, and the hot compression was simulated by using finite elemental method. The results show that the specimens occur barrel deformation that is affected by tensile stresses in the middle of specimens, beyond the critical strains of cracking, fractures form with intergranular cracks, and the critical strains increase with increasing the strain rate. At low strain rate, the micro-cracks form between inner grains before formation of macro-fractures, and the flow stress decreases.

参考文献

[1] 张义文,上官永恒.粉末高温合金的研究与发展[J].粉末冶金工业,2004(06):30-43.
[2] G. B. Viswanathan;P. M. Sarosi;M. F. Henry .Investigation of creep deformation mechanisms at intermediate temperatures in Rene 88 DT[J].Acta materialia,2005(10):3041-3057.
[3] 程茜,董建新,张麦仓.三代粉末高温合金的特征及发展[J].世界钢铁,2011(05):43-51.
[4] 张莹,刘明东,孙志坤,张义文.颗粒间断裂在 P/M 镍基高温合金低周疲劳断口上的特征[J].中国有色金属学报,2013(04):987-996.
[5] MUGHRABI H;OTT M;TETZLAFF U .New microstructural concepts to optimize the high-temperature strength ofγ′-hardened monocrystalline nickel-based superalloys[J].Materials Science and Engineering A,1997,234-236:434-437.
[6] ALNIAK M O;BEDIR F .Change in grain size and flow strength in P/M Rene 95 under isothermal forging conditions[J].Materials Science and Engineering B,2006,130(1/3):254-263.
[7] Gaofeng Tian;Chengchang Jia;Jiantao Liu;Benfu Hu .Experimental And Simulation On The Grain Growth Of P/m Nickel-base Superalloy During The Heat Treatment Process[J].Materials & design,2009(3):433-439.
[8] 柴国明,陈希春,郭汉杰.FGH96高温合金中一次碳化物形成规律[J].中国有色金属学报,2012(08):2205-2213.
[9] FANG B;JI Z;LIU M;TIAN G F JIA C C ZENG T T .Critical strain and models of dynamic recrystallization for FGH96 superalloy during two-pass hot deformation[J].Materials Science and Engineering A,2014,593(21):8-15.
[10] 中国航空材料手册编委会.中国航空材料手册[M].北京:中国标准出版社,2002:46.
[11] 刘建涛,张义文.FGH96合金粉末的俄歇分析及预热处理[J].中国有色金属学报,2012(10):2797-2804.
[12] FANG B;JI Z;LIU M;TIAN G F JIA C C ZENG T T .Study on constitutive relationships and processing maps for FGH96 alloy during two-pass hot deformation[J].Materials Science and Engineering A,2014,590:255-261.
[13] PRASAD V;GEGEL H;DORAIVELU S;MALAS J MORGAN J LARK K BARKER D .Modelling of dynamic material behavior in hot deformation:Forging of Ti-6242[J].Metallurgical Transactions A,1984,15(10):1883-1892.
[14] GEGEL H.Synthesis of atomistic and continuum modeling to describe microstructure:Computer Simulation in Materials Science[M].Metal Park,OH:ASM International,1987:291-344.
[15] GEGEL H;MALAS J;DORAIVELU S;SHENDE V.Modelling techniques used in forging process design:Metals handbook, forming and forging(Vol. 14)[M].Metal Park,OH:ASM International,1988:417-438.
[16] 张仁鹏,李付国,王晓娜.FGH96合金的热变形行为及其热加工图[J].西北工业大学学报,2007(05):652-656.
[17] 刘建涛,陶宇,张义文,张国星.FGH96合金的热塑性变形行为和工艺[J].材料热处理学报,2009(06):103-107.
[18] NING Y Q;YAO Z K;LI H;GUO H Z TAO Y ZHANG Y W .High temperature deformation behavior of hot isostatically pressed P/M FGH4096 superalloy[J].Materials Science and Engineering A,2010,527(04):961-966.
[19] KRUEGER D;KISSINGER R;MENZIES R.Development and introduction of a damage tolerant high temperature nickel-base disk alloy, René 88DT[A].Warrebdale,PA:TMS,1992:277-286.
[20] 王超渊,东赟鹏,王淑云,宋晓俊.挤压态镍基粉末高温合金热变形行为与组织研究[J].锻压技术,2014(04):126-132.
[21] 西北工业大学有色金属锻造编写组.有色金属锻造[M].北京:国防工业出版社,1979:13-15.
[22] 朱艳春,曾卫东,彭雯雯,张赋升.Ti40合金热压缩变形过程的开裂行为研究[J].稀有金属材料与工程,2013(10):2088-2092.
[23] ZHU Y C;ZENG W D;ZHAO Y Q;PENG W W .Damage and fracture mechanism of as-cast Ti40 titanium alloy during hot compression[J].Advanced Materials Research,2013,750/752:721-724.
[24] ZHANG Xue-min,ZENG Wei-dong,SHU Ying,ZHOU Yi-gang,ZHAO Yong-qing,WU Huan,YU Han-qing.Fracture criterion for predicting surface cracking of Ti40 alloy in hot forming processes[J].中国有色金属学会会刊(英文版),2009(02):267-271.
[25] KAILAS S V;PRASAD Y;BISWAS S .Flow instabilities and fracture in Ti-6Al-4V deformed in compression at 298 K to 673 K[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1994,25(10):2173-2179.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%