欢迎登录材料期刊网

材料期刊网

高级检索

以AZ91D合金为例,模拟研究镁合金凝固时的溶质分布情况,着重定量分析过冷度ΔT对枝晶尖端前沿最高溶质浓度、枝晶干轴对称中心溶质浓度、枝晶尖端溶质扩散层厚度以及溶质偏析比的影响。模拟结果表明:贫 Al 区主要集中于一次枝晶干和二次枝晶臂的轴对称中心,过冷度ΔT越大,枝晶尖端前沿溶质浓度c*L越高,枝晶干中心溶质浓度*Sc 越高,枝晶尖端前沿溶质扩散层厚度δ越小,偏析比 SR越大,微观偏析越严重,其具体关系分别为c*L1>c*L2>c*L3>c*L4、*S1c >*S2c >*S3c >*S4c 、δ1<δ2<δ3<δ4和SR1>SR2>SR3>SR4。

Based on the KKS model which couples the phase field, concentration field and temperature field, the phase-field model for the magnesium alloys with hcp structure was developed, taking AZ91D magnesium alloy for example, the solute distribution during the metal solidification was simulated, the effects of supercooling (ΔT) on the highest solute concentration in front of the dendrite tip, the solute concentration value in the axis center of dendrite arm, the thickness of solute diffusion layer of aluminum in front of dendrite tip and solute segregation ratio were studied emphatically and quantitatively. The simulation results show that the zone of poor Al distributes in the axisymmetric center of primary dendrite arms secondary dendrite arms, the larger the supercoolingΔT is, the higher the concentration maximum value c*L in front of the dendrite tip is, the higher the concentration value *Sc in the axis center of dendrite arm is, the smaller the boundary thicknessδof concentration in front of the dendrite tip is, the bigger the segregation ratio SR is and the severer the microsegregation is. The relationships are c*L1>c*L2>c*L3>c*L4 , *S1c > *S2c > *S3c > *S4c , δ1<δ2<δ3<δ4 and SR1>SR2>SR3>SR4, respectively.

参考文献

[1] SCHUMANN S;FRIEDRICH H .Current and future use of magnesium in the automotive industry[J].Materials Science Forum,2003,419/422(01):51-56.
[2] ESKIN D G.Physical metallurgy of direct chill casting of aluminum alloys[M].London:CRC Press,2008:12.
[3] Julia Kundin;Ricardo Siquieri;Heike Emmerich .A quantitative multi-phase-field modeling of the microstructure evolution in a peritectic Al-Ni alloy[J].Physica, D. Nonlinear phenomena,2013(1):116-127.
[4] 袁训锋,丁雨田.强界面能各向异性下二元Ni-Cu合金枝晶生长过程的相场法模拟[J].中国有色金属学报,2011(07):1656-1663.
[5] EIKEN J;B?TTGER B;STEINBACH I .Simulations of microstructure evolution during solidification of magnesium-based alloys[J].TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS,2007,60(2/3):179-184.
[6] EIKEN J .Dendritic growth texture evolution in magnesium-based alloys investigated by phase-field simulation[J].International Journal of Cast Metals Research,2009,22(1/4):86-89.
[7] B. Bottger;J. Eiken;I. Steinbach .Phase field simulation of equiaxed solidification in technical alloys[J].Acta materialia,2006(10):2697-2704.
[8] WANG M Y;WILLIAMS J J;JIANG L;CARLO F DE JING T CHAWLA N .Dendritic morphology of α-Mg during the solidification of Mg-based alloys:3D experimental characterization by X-ray synchrotron tomography and phase-field simulations[J].Scripta Materialia,2011,65:855-858.
[9] WANG M Y;JING T;LIU B C .Phase-field simulations of dendrite morphologies and selected evolution of primary α-Mg phases during the solidification of Mg-rich Mg-Al-based alloys[J].Scripta Materialia,2009,61:777-780.
[10] D. Montiel;L. Liu;L. Xiao .Microstructure analysis of AZ31 magnesium alloy welds using phase-field models[J].Acta materialia,2012(16):5925-5932.
[11] 缪家明,荆涛,柳百成.镁合金枝晶形貌的相场方法模拟[J].金属学报,2008(04):483-488.
[12] 袁训锋,丁雨田,郭廷彪,胡勇.强制对流作用下镁合金枝晶生长的相场法数值模拟[J].中国有色金属学报,2010(08):1474-1480.
[13] WHEELER A A;MURRAY B T;SCHAEFER R J .Computation of dendrites using a phase field model[J].PHYSICA D,1993,66(1/2):243-262.
[14] Suzuki T.;Ode M.;Kim SG.;Kim WT. .Phase-field model of dendritic growth[J].Journal of Crystal Growth,2002(Pt.1):125-131.
[15] Kim SG.;Suzuki T.;Kim WT. .Phase-field model for binary alloys[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1999(6 Pt.b):7186-7197.
[16] Kim SG.;Suzuki T.;Kim WT. .Interfacial compositions of solid and liquid in a phase-field model with finite interface thickness for isothermal solidification in binary alloys[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1998(3 Pt.b):3316-3323.
[17] 付振南,许庆彦,熊守美.基于概率捕获模型的元胞自动机方法模拟镁合金枝晶生长过程[J].中国有色金属学报,2007(10):1567-1573.
[18] KIM S G;KIM W T .Phase field modeling of dendrite growth with high anisotropy[J].Journal of Crystal Growth,2005,275(1/2):355-360.
[19] BOWER T F;BRODY H D;FLEMINGS M C .Measurements of solute redistribution in dendritic solidification[J].Transaction of the Metallurgical Society of AIME,1966,236:624-633.
[20] Qing Chen;Bo Sundman .Computation of Partial Equilibrium Solidification with Complete Interstitial and Negligible Substitutional Solute Back Diffusion[J].Materials transactions,2002(3):551-559.
[21] 朱昌盛,王智平,荆涛,肖荣振.二元合金微观偏析的相场法数值模拟[J].物理学报,2006(03):1502-1507.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%