The solution-treated (ST) condition and aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel (HNS) were investigated by optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results show that the ST condition of 18Cr-16Mn-2Mo-1.1N HNS with wN above 1% is identified as 1100 ℃ for 90 min, followed by water quenching to make sure the secondary phases completely dissolve into austenitic matrix and prevent the grains coarsening too much. Initial time-temperature-precipitation (TTP) curve of aged 18Cr-16Mn-2Mo-1.1N HNS which starts with precipitation of 0.05% in volume fraction is defined and the “nose” temperature of precipitation is found to be 850 ℃ with an incubation period of 1 min. Hexagonal intergranular and cellular Cr2N with a=0.478 nm and c=0.444 nm precipitates gradually increase in the isothermal aging treatment. The matrix nitrogen depletion due to the intergranular and a few cellular Cr2N precipitates induces the decay of Vickers hardness, and the increment of cellular Cr2N causes the increase in the values. Impact toughness presents a monotonic decrease and SEM morphologies show the leading brittle intergranular fracture. The ultimate tensile strength (UTS), yield strength (YS) and elongation (El) deteriorate obviously. Stress concentration occurs when the matrix dislocations pile up at the interfaces of precipitation and matrix, and the interfacial dislocations may become precursors to the misfit dislocations, which can form small cleavage facets and accelerate the formation of cracks.
参考文献
[1] | |
[2] | J.W. Simmons, Overview: High-nitrogen alloying of stainless steels, Mater. Sci. Eng. A, 207(1996), No.2, p.159.[2] H.B. Li, Z.H. Jiang, Z.R. Zhang, et al., Intergranular corrosion behavior of high nitrogen austenitic stainless steel, Int. J. Miner. Metall. Mater., 16(2009), No.6, p.654.[3] H.B. Li, Z.H. Jiang, Y. Yang, et al., Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels, Int. J. Miner. Metall. Mater., 16(2009), No.5, p.517.[4] H.B. Li, Z.H. Jiang, Y. Cao, et al., Fabrication of high nitrogen austenitic stainless steels with excellent mechanical and pitting corrosion properties, Int. J. Miner. Metall. Mater., 16(2009), No.4, p.387.[5] G. Stein and I. Huchlenbroich, Manufacturing and application of high nitrogen steels, Mater. Manuf. Proc., 19 (2004), No.1, p.7. [6] B. E. Paton, V. Y. Saenko, Y. M. Pomarin, et a1., Arc slag remehing for high strength steel and various alloys, J. Mater. Sci., 39(2004), No.24, p.7269.[7] F. Shi, L. J. Wang, W. F. Cui, et al., Precipitation kinetics of Cr2N in a high-nitrogen austenitic stainless steel, J. Iron Steel Res. Int., 15(2008), No.6, p.72.[8] T.H. Lee, C.S. Oh, C.G. Lee, et al., Precipitation characteristics of the second phases in high-nitrogen austenitic 18Cr-18Mn-2Mo-0.9N steel during isothermal aging, Met. Mater. Int., 10(2004), No.3, p.231.[9] M.O. Speidel, Properties and applications of high nitrogen steels, [in] Proceeding of the 1st International High Nitrogen Steels, London, 1989, p.92.[10] Y. Katada, M. Sagara, and Y. Kobayashi, Fabrication of high strength high nitrogen stainless steel with excellent corrosion resistance and its mechanical properties, Mater. Manuf. Process., 19(2004), No.1, p.19.[11] M. Ogawa, K. Hiraoka, Y. Katada, et al., Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel, ISIJ Int., 42(2002), No.12, p.1391.[12] T.H. Lee, S.J. Kim, and Y.C. Jung, Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900°C, Metall. Mater. Trans. A, 31(2000), No.7, p.1713.[13] R.D. Knutsen, C.L. Lang, and J.A. Basson, Discontinuous cellular precipitation in a Cr-Mn-N steel with niobium and vanadium additions, Acta Mater., 52(2004), No.8, p.2407.[14] T.H. Lee and S.J. Kim, Phase identification in an isothermally aged austenitic 22Cr-21Ni-6Mo-N stainless steel, Scripta Mater., 39(1998), No.7, p.951.[15] M. Kikuchi, M. Kajihara, and S.K. Choi, Cellular precipitation involving both substitutional and interstitial solutes: cellular precipitation of Cr2N in Cr-Ni austenitic steels, Mater. Sci. Eng. A, 146(1991), No.1-2, p.131.[16] N.C. Santhi Srinivas, R. Pendase, Gouthama, et al., Initial stages of discontinuous precipitation in high nitrogen austenitic stainless steels, Trans. Indian Inst. Met., 55(2002), No.4, p.247.[17] H.B. Li, Z.H. Jiang, Z.R. Zhang, et al., Mechanical properties of nickel free high nitrogen austenitic stainless steels, J. Iron Steel Res. Int., 14(2007), Suppl.1, p.330.[18] H.B. Li, Z.H. Jiang, Z.R. Zhang, et al., Effect of grain size on mechanical properties of nickel-free high nitrogen austenitic stainless steel, J. Iron Steel Res. Int., 16(2007), No.1, p.58.[19] P. Shankar, H. Shaikh, S. Sivakumar, et al., Effect of thermal aging on the room temperature tensile properties of AISI type 316LN stainless steel, J. Nuc. Mater., 264(1999), No.1, p.29.[20] J.W. Simmons, B.S. Covino, J.A. Hauk, et al., Effect of nitride (Cr2N) precipitation on the mechanical, corrosion and wear properties of austenitic stainless steels, ISIJ Int., 36(1996), No.7, p.846.[21] H. B. Li, Z. H. Jiang, Q. F. Ma, et al. Manufacturing High Nitrogen Austenitic Stainless Steels by Pressurized Induction Furnace, submitted to 2011 First International Conference on Mechanical Engineering, accepted.[22] N.C. Santhi Srinivas and V.V. Kutumbarao, On the discontinuous precipitation of Cr2N in Cr-Mn-N austenitic stainless steels, Scripta Mater., 37(1997), No.3, p.285.[23] O. Storz, A. Ibach, and M. Pohl, Morphology of σ-phase and its effects on the mechanical properties of duplex steels, [in] Proceedings of Duplex 2007 International Conference, Grado, 2007, p.95.[24] Z. H. Jiang, Z. R. Zhang, H. B. Li, et al., Microstructural evolution and mechanical properties of aging high nitrogen austenitic stainless steels, Int. J. Miner. Metall. Mater., 17(2010), No.6, p.729.[25] K. Maruyama, G. Suzuki, H.Y. Kim, et al., Saturation of yield stress and embrittlement in fine lamellar TiAl alloy, Mater. Sci. Eng. A, 329-331(2002), No.6, p.190. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%