欢迎登录材料期刊网

材料期刊网

高级检索

基于BP神经网络法,利用均匀化退火工艺改善AZ91镁合金的组织结构,获得了不同退火状态下材料的力学特性参数。结果表明,BP神经网络能够很好地映射热处理工艺与材料性能间的关系,实验值与预测值重合度很好。

Based on BP neural network,the mechanical properties parameters of AZ91 magnesium alloy under different annealing conditions were obtained by homogenizing annealing. The results show that BP neural network can map relationship between heat treatment process and material properties very well,and prediction accuracy is very good.

参考文献

[1] 赵源华,陈云贵,唐永柏,肖素芬,牛高,魏尚海,章晓萍.Nd和Ce对AZ91镁合金组织和力学性能的影响[J].特种铸造及有色合金,2009(01):69-72.
[2] Hirai K;Somekawa H;Takigawa Y;Higashi K .Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):276-280.
[3] 刘生发,王慧源.Sr对AZ91镁合金铸态组织的影响及其细化机制[J].稀有金属材料与工程,2006(06):970-973.
[4] 崔红卫,闵光辉,李廷斌,刘俊成.Be对AZ91镁合金组织、力学性能及耐腐蚀性能的影响[J].特种铸造及有色合金,2008(12):903-905.
[5] 宋雨来,刘耀辉,朱先勇,王文琴.Ho对AZ91镁合金腐蚀行为的影响[J].吉林大学学报(工学版),2011(02):366-370.
[6] 王娜,白朴存,侯小虎,郝永飞.Nd对AZ91镁合金显微组织和耐腐蚀性能的影响[J].材料研究学报,2011(02):214-218.
[7] N. V. Ravi Kumar;J. J. Blandin;C. Desrayaud .Grain refinement in AZ91 magnesium alloy during thermomechanical processing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):150-157.
[8] Cizek L;Greger M .Study of selected properties of magnesium alloy AZ91 after heat treatment and forming[J].Materials Pro-cessing Technology,2004,157/158:644-471.
[9] 潘国如,王顺成.AZ91镁合金挤压组织和性能研究[J].特种铸造及有色合金,2007(10):778-780.
[10] 罗永新,龙华,张来希,程利.AZ91镁合金热挤压变形的力学模型研究[J].热加工工艺,2010(03):38-42.
[11] 邵一涛,曾卫东,韩远飞,周建华,王晓英,周义刚.基于BP人工神经网络的TC17钛合金显微组织-力学性能关系预测[J].稀有金属材料与工程,2011(02):225-230.
[12] 周古为,郑子樵,李海.基于人工神经网络的7055铝合金二次时效性能预测[J].中国有色金属学报,2006(09):1583-1588.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%