欢迎登录材料期刊网

材料期刊网

高级检索

采用研磨-煅烧法在ZnS中复合不同含量的WO3(0.5%~8%,质量分数),形成WO3/ZnS异质结光催化剂,利用N2物理吸附、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、紫外可见漫反射光谱(UV-vis DRS)、红外光谱(FT-IR)、光电子能谱(xPs)和光致发光谱(PL)等对合成的样品进行了表征;考察不同WO3含量样品对ZnS的结晶度、比表面积、表面羟基、光吸收性能的影响,并以λ=254 nm的紫外光为光源,评价该催化剂光催化降解酸性橙Ⅱ的活性,考察WO3复合对WO3/ZnS样品光催化性能的影响.结果表明:WO3的复合可抑制ZnS晶粒在煅烧过程中的长大,同时提高催化剂的比表面积和催化剂表面的羟基数量,并能有效地抑制光生电子与空穴的复合.当复合1%WO3(质量分数),所制备的WO3/ZnS催化剂的活性最高,比纯ZnS的活性提高了1.8倍.其原因是复合样品具有较好的组织结构的性能,同时,形成的WO3/ZnS异质结有利于光生电子与空穴的分离,从而显著提高光催化剂的脱色活性和稳定性.

参考文献

[1] Changlin Yu;Kai Yang;Yu Xie.Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability[J].Nanoscale,20135(5):2142-2151.
[2] 刘国聪;金真;张喜斌;李险峰;刘鸿.La掺杂BiVO4微米球的水热合成和光催化性能[J].中国有色金属学报,2013(3):793-801.
[3] 吴德智;范希梅;田轲;代佳;刘花蓉.硫化亚铜/四针状氧化锌晶须异质结的多元醇法制备及光催化性能[J].中国有色金属学报(英文版),2012(7):1620-1628.
[4] 周晚琴;余长林;樊启哲;魏龙福;陈建钗;YU Jimmy C.超声波制备介孔结构的氮掺杂TiO2纳米晶及其可见光催化性能[J].催化学报,2013(6):1250-1255.
[5] 李爱昌;赵娣;李倩;张敬;郑彦俊.(Ni-Mo)-TiO2纳米薄膜的制备及其光催化降解罗丹明B的性能[J].中国有色金属学报,2012(2):526-532.
[6] 余长林;陈建钗;操芳芳;李鑫;樊启哲;YU Jimmy C;魏龙福.Pt/BiOCl纳米片的制备、表征及其光催化性能[J].催化学报,2013(2):385-390.
[7] Changlin Yu;Jimmy C. Yu.A Simple Way to Prepare C-N-Codoped TiO2 Photocatalyst with Visible-Light Activity[J].Catalysis Letters,20093/4(3/4):462-470.
[8] Henderson, M.A.;Lyubinetsky, I..Molecular-level insights into photocatalysis from scanning probe microscopy studies on TiO2(110)[J].Chemical Reviews,20136(6):4428-4455.
[9] Yu, CL;Yu, JC;Chan, M.Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres[J].Journal of Solid State Chemistry,20095(5):1061-1069.
[10] Lucia Nasi;Davide Calestani;Tullo Besagni.ZnS and ZnO Nanosheets from ZnS(en)_(0.5) Precursor: Nanoscale Structure and Photocatalytic Properties[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201212(12):6960-6965.
[11] Wei-Ta Chen;Yung-Jung Hsu.L-Cysteine-Assisted Growth of Core-Satellite ZnS-Au Nanoassemblies with High Photocatalytic Efficiency[J].Langmuir: The ACS Journal of Surfaces and Colloids,20108(8):5918-5925.
[12] 王海鹰;杨洋;卢晓峰;王策.硫化锌掺锰/聚乙烯醇复合纳米纤维的制备与表征[J].高等学校化学学报,2006(9):1785-1787.
[13] Zhang, Y.;Zhang, N.;Tang, Z.-R.;Xu, Y.-J..Graphene transforms wide band gap ZnS to a visible light photocatalyst. the new role of graphene as a macromolecular photosensitizer[J].ACS nano,201211(11):9777-9789.
[14] 冯守爱;赵江红;朱珍平.通过碳纳米管与硫化锌纳米晶体复合提高硫化锌的光催化活性[J].新型炭材料,2008(3):228-234.
[15] 余长林;杨凯;舒庆;YU Jimmy C;操芳芳;李鑫.WO3/ZnO复合光催化剂的制备及其光催化性能[J].催化学报,2011(4):555-565.
[16] 余长林;杨凯;YUJimmyC;操芳芳;李鑫;周晓春.水热合成Bi2WO6/ZnO异质结型光催化剂及其光催化性能[J].无机材料学报,2011(11):1157-1163.
[17] Xi-Guang Han;Hui-Zhong He;Qin Kuang.Controlling Morphologies and Tuning the Related Properties of Nano/Microstructured ZnO Crystallites[J].The journal of physical chemistry, C. Nanomaterials and interfaces,20092(2):584-589.
[18] Gerald G. Janauer;Arthur Dobley;Jingdong Guo;Peter Zavalij;M. Stanley Whittingham.Novel Tungsten, Molybdenum, and Vanadium Oxides Containing Surfactant Ions[J].Chemistry of Materials,19968(8):2096-2101.
[19] Changlin Yu;Jimmy C. Yu;Wanqin Zhou.WO3 Coupled P-TiO2 Photocatalysts with Mesoporous Structure[J].Catalysis Letters,20103/4(3/4):172-183.
[20] Dupin JC.;Vinatier P.;Levasseur A.;Gonbeau D..Systematic XPS studies of metal oxides, hydroxides and peroxides[J].Physical chemistry chemical physics: PCCP,20006(6):1319-1324.
[21] Changlin Yu;Jimmy C. Yu.Sonochemical fabrication, characterization and photocatalytic properties of Ag/ZnWO_4 nanorod catalyst[J].Materials Science & Engineering. B, Solid-State Materials for Advanced Technology,20091(1):16-22.
[22] Changlin Yu;Caifeng Fan;Jimmy C. Yu;Wanqin Zhou;Kai Yang.Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV light irradiation[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,20111(1):140-146.
[23] Gaopeng Dai;Jiaguo Yu;Gang Liu.Synthesis and Enhanced Visible-Light Photoelectrocatalytic Activity of p-n Junction BiOI/TiO2 Nanotube Arrays[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201115(15):7339-7346.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%