欢迎登录材料期刊网

材料期刊网

高级检索

采用磁控溅射技术在Si衬底上沉积Si/[Fe(10 nm)/Nb(4 nm)/Fe(4 nm)/Nb(4 nm)]_2/[Fe(4nm)/Nb(4 nm)]_4多层膜.用2 MeV的Xe离子在室温下辐照多层膜.采用俄歇深度剖析、X射线衍射和振动样品磁强计分析辐照引起的多层膜元素分布、结构及磁性变化.AES深度剖析谱显示当辐照注量达到1.0×10~(14) ions/cm~2时,多层膜界面两侧元素开始混合;当辐照注量达到2.0×10~(16) ions/cm~2时,多层膜层状结构消失,Fe层与Nb层几乎完全混合.XRD谱显示,当辐照注量达到1.0×10~(14) ions/cm~2时,Nb的衍射峰和Fe的各衍射峰的峰位相对于标准卡片向小角方向偏移,这说明辐照引起Nb基和Fe基FeNb固溶体相的形成;当辐照注量大于1.0×10~(15) ions/cm~2时,辐照引起非晶相的出现.VSM测试显示,多层膜的磁性随着结构的变化而变化.在此实验基础上,对离子辐照引起界面混合现象的机理进行了探讨.

The behavior of the metallic multilayers of si/[Fe(10 nm)/Nb(4 nm)/Fe(4 nm)/Nb(4 nm)]_2/[Fe(4 nm)/Nb(4 nm)]_4 under 2 MeV Xe-ion irradiation has been investigated by depth profile analysis of Auger electron spectroscopy,X-ray diffraction and vibrating sample mag-netometer.The obtained experimental results show that the inter-mixing between Fe and Nb lay-ers occurs in the 1.0×10~(14) ions/cm~2 irradiated multilayer sample which results in the formation of Nb-based and Fe-based FeNb solid solution.For the samples irradiated to fluence larger than 1.0 ×10~(14) ions/cm~2,amorphisation is observed,and moreover,the layered structure of the multilayer samples is broken up completely for the samples under 1.0×10~(16) or 2.0×10~(16) ions/cm~2 irradia-tion.Vibrating sample magnetometer measurement also reveals that the magnetization of the sam-ples changes with the evolution of the structure of multilayers.Possible mechanism of the modifi-cation in Fe/Nb multilayers induced by Xe-ion irradiation is briefly discussed.

参考文献

[1] Baibich M N,Broto J M,Fert A,et al.Phys Rev Lett,1988,61:2472.
[2] Sakai T,Oomi G,Okada K,et al.Physica,1997,B237-238; 275.
[3] Petroff F,Barthelemy A,Mosca D H,et al.Phys Rev,1991,B44(10):5355.
[4] Pratt W P,Jr,Lee S-F,et al.Phys Rev Lett,1991,66:3060.
[5] den Broeder F J A,Kuiper D,van de Mosselaer A P,et al.Phys Rev Lett,1988,60:2769.
[6] Parkin S S P,Li Z G,Smith D J.Appl Phys Lett,1991,58:2710.
[7] Parkin S S P,More N,Roche K P.Phys Rev Lett,1990,64:2304.
[8] Parkin S S P,Bhadra R,Roche K P.Phys Rev Lett,1991,66(16):2152.
[9] Camley R E,Barnas J.Phys Rev Lett,1989,63:664.
[10] Asano Y,Oguria A,Maekawa S.Phys Rev,1993,B48:6192.
[11] Barnas J,Fuss A,Camley R E,et al.Phys Rev,1990,B42:8110.
[12] Fullerton E E,Conover M J,Mattson J E,et al.Phys Rev Lett,1992,68:859.
[13] Nakashini H,Okiji A,Kasai H.J Magn and Magn Matter,1993,126:451.
[14] Petroff F,Barthelemy A,Hamzic A,et al.J Magn and Magn Matter,1991,93:95.
[15] Takanashi K,Obi Y,Mitani Y,et al.J Phys Soc Jpn,1992,61:1169.
[16] Rensing N M.Payne A P,Clemens B M.J Magn and Magn Matter,1993,121:436.
[17] Gubbiottia G,Carlottia G,Albertinib F,et al.Thin Solid Films,2003,428:102.
[18] Petroff F,Barthelemy A,Hamzic A,et al.J Magn and Magn Matter,1991,93:95.
[19] Belien P,Schad R,Potter C D,et al.Phys Rev,1994,B50:9957.
[20] Liu B X,Zhang Z J.J Phys:Condens.Matter,1996,8:165.
[21] Cai M,Veres T,Roorda S,et al.J Appl Phys,2004,95(4):1996.
[22] Amirthapandian S,Panigrahi B K,Srivastava A K,et al.Nu-cl Instr and Meth,2003,B212:140.
[23] wei L c,Averback R S.J Appl Phys,1997,81(2):613.
[24] Liu B X,Lai W S,Zhang Q.Matter Sei Eng R-Reports,2000,29(1-2):1.
[25] Richomme F,Teillet J,Fnidiki A,et al.Nuel Instr and Meth,1997,B122:507.
[26] Kopeewicz M,Stobiecki F,Jagielski J,et al.J Magn and Magn Matter,2005,286:437.
[27] Wei Kongfang,Wang Zhiguang.Nuclear Physics Review,2006,23(2):215(in Chinese).(魏孔芳,王志光.原子核物理评论,2006,28(2):215.)
[28] Liu Chunbao,Wang Zhiguang.Nuclear Physics Review,2006,23(2):210(in Chinese).(刘纯宝,王志光.原子核物理评论,2006,23(2):210.)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%