欢迎登录材料期刊网

材料期刊网

高级检索

针对目前钢水温度预定方法存在不足,在分析钢水温度预定原理的基础上,在邯钢邯宝炼钢厂建立了基于BP神经网络的精炼终点目标温度和转炉终点目标温度的动态预定模型。利用邯宝炼钢厂的历史生产数据对模型进行了训练和测试,并进行了现场应用试验。结果表明,预定模型对转炉和精炼终点目标温度进行了优化,应用预定模型后,LF开始温度命中率提高到75%,中间包温度命中率提高到96.7%。

Based on the principles of presetting of molten steel temperature,a dynamic presetting model of molten steel temperature was established in Hanbao Steel Plant using BP neural network method.This model is intended to overcome the disadvantages of traditional presetting methods.The model has been used to predict and set the target end point temperature of molten steel in second refining and the target end point temperature of basic oxygen furnace.The model was trained and tested by the history production data of the steel plant and then applied in production.The simulation results showed that the target end point temperature of second refining and the target end point temperature of basic oxygen furnace had been optimized,the hit rate of starting temperature in LF increased by 75 % and the hit rate of predicted temperature in tundish enhanced by 96.7 %.

参考文献

[1] 谢书明,陈昌,丁惜瀛.基于BP神经网络的转炉炼钢终点预报[J].沈阳工业大学学报,2007(06):707-710.
[2] 冯明霞,陈韧,李强,邹宗树.基于非线性HBI网络的转炉冶炼终点预测模型[J].材料与冶金学报,2010(02):92-96.
[3] Jose Manuel Mesa Fernandez;Valeriano Alvarez Cabal;Vicente Rodriguez Montequin;Joaquin Villanueva Balsera .Online estimation of electric arc furnace tap temperature by using fuzzy neural networks[J].Engineering Applications of Artificial Intelligence: The International Journal of Intelligent Real-Time Automation,2008(7):1001-1012.
[4] 韩颖.基于LS-SVM的电炉钢水温度预测[J].沈阳大学学报,2008(02):36-38.
[5] Huixin Tian;Zhizhong Mao;Shu Wang.Application of genetic algorithm combined with BP neural network in soft sensor of molten steel temperature[A].,2006:7742-7745.
[6] Huixin TIAN;Zhizhong MAO;Yan WANG .Hybrid Modeling of Molten Steel Temperature Prediction in LF[J].ISIJ International,2008(1):58-62.
[7] Huixin TIAN;Zhizhong MAO;Anna WANG .A New Incremental Learning Modeling Method Based on Multiple Models for Temperature Prediction of Molten Steel in LF[J].ISIJ International,2009(1):58-63.
[8] ZHANG Chun-xia,WANG Bao-jun,ZHOU Shi-guang,LIU Liu,XU Jing-bo,LIN Li-ping,ZHANG Cheng-fu.Hybrid Neural Network Model for RH Vacuum Refining Process Control[J].钢铁研究学报(英文版),2004(01):12-16.
[9] 李亮,姜周华,王文忠,刘晓,顾文兵,徐荣军.应用神经网络技术预报VD炉终点钢水温度[J].钢铁研究学报,2003(03):56-59.
[10] 徐安军;田乃媛;许中波.传热反问题研究方法在钢水温度预定中的应用[J].炼钢,1996(06):36-40.
[11] Hagan M.T.;Menhaj M.B. .Training feedforward networks with the Marquardt algorithm[J].IEEE Transactions on Neural Networks,1994(6):989-993.
[12] 赵慧,甘仲惟,肖明.多变量统计数据中异常值检验方法的探讨[J].华中师范大学学报(自然科学版),2003(02):133-137.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%