无线通讯系统向高频率、高可靠性的发展要求声表面波滤波器(SAWF)同时具备高声速、高机电耦合系数、低插入损耗、高温度稳定性,而多层结构SAWF能够满足这些要求,因此多层结构SAWF近年来引起了人们极大的关注,并取得了较大的进展.简述了SAWF的基本结构和原理,回顾了近年来多层结构SAWF的研究进展,包括理论研究和实验研究,展望了其今后的发展趋势.
参考文献
[1] | Yamanouchi K.;Meguro T. .Nanometre electrode fabrication technology using anodic oxidation resist films and applications to 10 GHz surface acoustic wave devices[J].Electronics Letters,1994(12):1010-1011. |
[2] | X.B. Wang;J.J. Chen;D.M. Li;F. Zeng;F. Pan .Investigation of High-Quality ZnO Film on Polycrystalline Diamond Wafer for Fabrication of High Frequency SAW Filter[J].Key engineering materials,2007(1):242-245. |
[3] | Jin-Chen Hsu;Tsung-Tsong Wu .Bleustein-Gulyaev-Shimizu surface acoustic waves in two-dimensional piezoelectric phononic crystals[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2006(6):1169-1176. |
[4] | Nakahata H.;Hachigo A.;Higaki K.;Fujii S.;Shikata S.;Fujimori N. .Theoretical study on SAW characteristics of layered structuresincluding a diamond layer[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1995(3):362-375. |
[5] | Hachiqou A;Itakura K;Kitabayashi H et al.Development of gigaherts-range diamond surface acoustic wave(SAW)filters[J].Sei Techn Rev,2002,53:63. |
[6] | Dewan N;Sreenivas K;Gupta V .Temperature-compensated devices using thin TeO2 layer with negative TCD[J].IEEE Electron Device Lett,2006,27(09):752. |
[7] | 田民波;刘德令.薄膜科学与技术手册[M].北京:机械工业出版社,1991 |
[8] | Tsung-Tsong Wu;Yung-Yu Chen .Exact analysis of dispersive SAW devices on ZnO/diamond/Si-layeredstructures[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2002(1):142-149. |
[9] | Wang L.;Rokhlin S.L. .A compliance/stiffness matrix formulation of general Green's function and effective permittivity for piezoelectric multilayers[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2004(4):453-463. |
[10] | Hachigo A.;Malocha D.C. .SAW device modeling including velocity dispersion based on ZnO/diamond/Si layered structures[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1998(3):660-666. |
[11] | Assouar MB.;Rioboo RJ.;Sarry F.;Alnot P.;Elmazria O. .Modelling of SAW filter based on ZnO/diamond/Si layered structure including velocity dispersion[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2000(0):200-204. |
[12] | Hofer M.;Finger N.;Kovacs G.;Schoberl J.;Zaglmayr S.;Langer U.;Lerch R. .Finite-element simulation of wave propagation in periodic piezoelectric SAW structures[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2006(6):1192-1201. |
[13] | Ballandras S;Reinhardt A;Laude V;Soufyane A;Camou S;Daniau W;Pastureaud T;Steichen W;Lardat R;Solal M .Simulations of surface acoustic wave devices built on stratified media using a mixed finite element/boundary integral formulation[J].Journal of Applied Physics,2004(12):7731-7741. |
[14] | Shin W C;Wu M S .Theoretical study of surface acoustic wave propagation on KNbO3/MgO/GaAs layered structures[J].Japanese Journal of Applied Physics,1997,36:209. |
[15] | Zhang V;Lefebvre J;Gryba T.SAW characteristics in a layered ZnO/GaAs structure for design of integrated SAW filters[A].,2001:261. |
[16] | Kim D;Kim J C;Kim E.An LTCC power amplifier module integrated with a SAW duplexer[A].,2005:1755. |
[17] | Tomar M;Gupta V;Sreenivas K.Theoretical studies on LiNbO3/sapphire layered structure with SiO2 over layer for zero TCD SAW device applications[A].,2001:265. |
[18] | Shikata S;Hachigo A;Nakahata H et al.Simulation of characteristics of a LiNbO3/diamond sudace acoustic wave[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2004,51(10):1309. |
[19] | Shikata S.;Hachigo A.;Nakahata H. .Simulation of characteristics of a SiO<sub>2</sub>/c-axis-oriented LiNbO<sub>3</sub>/diamond surface acoustic wave[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2004(12):1683-1689. |
[20] | Shikata S;Hachigo A;Nakahata H et al.Simulation of characteristics of KNbO3/diamond surface acoustic wave[J].Diamond and Related Materials,2005,14:167. |
[21] | Benetti M;Cannata D;Di Pietrantonio F.Theoretical and experimental investigation of PSAW and SAW properties of AlN films on isotropic diamond substrates[A].,2005:1868. |
[22] | Kao K S;Cheng C C;Chen Y C .Synthesis and surfaca acoustic wave properties of AlN films deposited on LiNbO3 substrates[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2002,49(03):345. |
[23] | Kao K S;Cheng C C;Chan Y C et al.The dispersion properties of sudace acoustic wave devices on AlN/LiNbO3 film/substrate structure[J].Applied Surface Science,2004,230:334. |
[24] | 孙剑,杨天鹏,白亦真,徐艺滨,王新胜,杜国同.自持金刚石厚膜上沉积ZnO薄膜的研究[J].真空科学与技术学报,2006(z1):140-142. |
[25] | Elmazria O.;Mortet V.;El Hakiki M.;Nesladek M.;Alnot P. .High velocity SAW using aluminum nitride film on unpolished nucleation side of free-standing CVD diamond[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2003(6):710-715. |
[26] | Hakiki M;Elmazria O;Assouar M et al.ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient[J].Diamond and Related Materials,2005,14:1175. |
[27] | Tang IT.;Chen HJ.;Hwang WC.;Wang YC.;Houng MP.;Wang YH. .Applications of piezoelectric ZnO film deposited on diamond-like carbon coated onto Si substrate under fabricated diamond SAW filter[J].Journal of Crystal Growth,2004(1/4):461-466. |
[28] | Tian JZ;Zhang Q;Zhou Q;Gruenwald R;Huesgen M;Yoon SF;Ahn J .Correlation between adhesion of diamond-like carbon film on LiTaO3 substrate and SAW velocity[J].Surface & Coatings Technology,2005(1/3):198-201. |
[29] | Cheng C C;Kao K S;Chen Y C et al.Temperature coefficient of SAW device on SiO2/proton exchanged LiNbO3 substrate[J].Ferroelectrics,2004,304:143. |
[30] | Nishimura K.;Shigekawa N.;Yokoyama H.;Hohkawa K. .SAW characteristics of GaN with n/sup +/-GaN IDTs[J].Electronics Letters,2006(1):62-63. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%