欢迎登录材料期刊网

材料期刊网

高级检索

针对镁合金作为镁电池负极材料存在着自腐蚀速率大、负极利用率低、电压滞后等问题,采用恒温浸泡、极化曲线、恒电流放电等手段对AZ31(挤压态)镁合金和纯镁(铸态)进行了试验研究和分析。研究了AZ31和纯镁在浓度为1.0mol/L,1.5mol/L,2.0mol/L的MgS04,Mg(C104)2,MgCl2和Mg(N03)2溶液中的腐蚀行为和电化学性能,具体分析了AZ31在不同电解液中的电化学行为。结果表明,AZ31在MgC12溶液中的自腐蚀速率较高且生成较厚的腐蚀产物膜,严重降低了电极的利用率,在MgSO4溶液中则常常发生点蚀,不适宜用作镁电池负极材料,而在Mg(C1O4)2和Mg(NO3)2溶液中具有相对较好的耐蚀性能和放电效率。

The magnesium electrode material is greatly concerned in magnesium oatteiy, but problems such as the high self-corrosion rate, low current efficiency and potential lag at the beginning of sequel dischargel So the electrochemical behavior and corrosion behavior of AZ31 magnesium alloy and pure magnesium in MgSO4, Mg(ClO4 )2, MgC12 and Mg(NOa )2 solutions were investigated by means of immersion testing at constant temperature and measurements of polarization curve and constant-current discharge. The results show that the corrosion rate of AZ31 alloy in MgC12 solution was the highest, and pitting corrosion took place in MgSO4 solution. However in Mg(C104 )2 and Mg(NO3 ) the corrosion and discharge efficiency were relatively good.

参考文献

[1] 封雪松,熊中平,司玉军,李敏娇.AZ31和AZ61镁合金在MgSO4溶液中的电化学行为对比[J].腐蚀与防护,2007(11):553-555.
[2] 尧玉芬,陈昌国,刘渝萍,王荣.镁电池的研究进展[J].材料导报,2009(19):119-121.
[3] 彭成红,朱敏.镁电池研究进展[J].电池,2003(02):121-123.
[4] Dell RM. .Batteries - fifty years of materials development[J].Solid state ionics,2000(1/2):139-158.
[5] 李吉刚,孙杰.镁二次电池材料的国内外研究现状[C].第二届中国储能与动力电池及其关键材料学术研讨会与技术交流会论文汇编,2007:235-239.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%