欢迎登录材料期刊网

材料期刊网

高级检索

多壁碳纳米管(MWCNT)经HNO3/H2SO4 混酸氧化处理、二氨基-二苯甲烷化学修饰后,得到胺功能化多壁碳纳米管(MWCNT-NH2);通过原位聚合制备多壁碳纳米管/甲基丙烯酸甲酯-丙烯酰胺共聚物杂化膜.采用拉曼光谱、红外光谱、扫描电镜表征了多壁碳纳米管化学修饰前、后的结构和形貌;采用扫描电镜和zeta电位仪分析了杂化膜的结构和表面荷电特性;实验考察了杂化膜在苯、环已烷中吸附-溶胀性能.研究结果显示,MWCNT—NH2/poly (MMA-AM)杂化膜的表面zeta电位随MWCNT-NH2填充量的增加而增大,MWCNT—NH2在杂化膜中分散性较好;在碳纳米管填充量相同的情况下,MWCNT—NH2/poly(MMA-AM)杂化膜的苯平衡吸附溶胀度与苯/环己烷吸附-溶胀选择性大于MWCNT/poly(MMA-AM)杂化膜.MWCNT—NH2/poly (MMA-AM)杂化膜的苯平衡吸附-溶胀度与苯/环己烷平衡吸附-溶胀选择性随MWCNT—NH2填充量的增加而增大;而MWCNT/poly(MMA-AM)杂化膜的苯平衡吸附-溶胀度随MWCNT填充量的增加略有增大,苯/环己烷平衡吸附-溶胀选择性随MWCNT填充量的增加呈下降趋势.研究结果表明,MWCNT—NH2/poly(MMA-AM)杂化膜对苯/环己烷具有苯优先选择吸附-溶胀的特性,且苯优先选择吸附-溶胀的特性随杂化膜中MWCNT—NH2填充量的增加而更加显著.

参考文献

[1] Vito Sgobba;Dirk M. Guldi .Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics[J].Chemical Society Reviews,2009(1):165-184.
[2] Umeyama T;Imahori H .Carbon nanotube-modified electrodes for solar energy conversion[J].Energy Environ Sci,2008,1:120-133.
[3] Krystyna Pyrzynska .Carbon Nanotubes as a New Solid-Phase Extraction Material for Removal and Enrichment of Organic Pollutants in Water[J].Separation and Purification Reviews,2008(3/4):372-389.
[4] Jonathan N. Coleman;Umar Khan;Werner J. Blau .Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(9):1624-1652.
[5] Holt JK;Park HG;Wang YM;Stadermann M;Artyukhin AB;Grigoropoulos CP;Noy A;Bakajin O .Fast mass transport through sub-2-nanometer carbon nanotubes[J].Science,2006(5776):1034-1037.
[6] Skoulidas AI.;Ackerman DM.;Johnson JK.;Sholl DS. .Rapid transport of gases in carbon nanotubes - art. no. 185901[J].Physical review letters,2002(18):5901-0.
[7] Chen HB;Sholl DS .Predictions of selectivity and flux for CH4/H-2 separations using single walled carbon nanotubes as membranes[J].Journal of Membrane Science,2006(1/2):152-160.
[8] Gusev, AA;Guseva, O .Rapid mass transport in mixed matrix nanotube/polymer membranes[J].Advanced Materials,2007(18):2672-2676.
[9] Corry B .Desining carbon nanotube membranes for effi cient water desalination[J].journal of Physical Chemistry B,2008,112(05):1427-1434.
[10] Sangil Kim;Todd W.Pechar;Eva Marand .Poly(imide siloxane)and carbon nanotube mixed matrix membranes for gas separation[J].Desalination: The International Journal on the Science and Technology of Desalting and Water Purification,2006(1/3):330-339.
[11] Kim S;Chen Liang;Johnson J K et al.Functionalized carbon nanotube mixed matrix membranes for gas separation:theory and experiment[J].Journal of Membrane Science,2007,294:147-158.
[12] Cong Hailin;Zhang Jianmin;Radosz M et al.Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-l,4-phenylene oxide) for gas separation[J].Journal of Membrane Science,2007,294:178-185.
[13] Peng FB;Pan FS;Sun HL;Lu LY;Jiang ZY .Novel nanocomposite pervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube[J].Journal of Membrane Science,2007(1/2):13-19.
[14] Qiu Shi;Wu Liguang;Shi Guozhong et al.Pervaporation property of chitosan membrane with functionalized multiwalled carbon,nanotubes[J].Industrial and Engineering Chemistry Research,2010,49(22):11667-11675.
[15] 汪锰,安全福,吴礼光,莫剑雄,高从堦.膜Zeta电位测试技术研究进展[J].分析化学,2007(04):605-610.
[16] Wang M;Wu LG;Zheng XC;Mo JX;Gao CJ .Surface modification of phenolphthalein poly(ether sulfone) ultrafiltration membranes by blending with acrylonitrile-based copolymer containing ionic groups for imparting surface electrical properties[J].Journal of Colloid and Interface Science,2006(1):286-292.
[17] 刘济林,吴桐山,伍小丽,张杰元,陈宪宏.不同氧化体系处理对多壁碳纳米管的影响[J].功能材料,2011(02):264-266,270.
[18] Ying-Ling Liu;Wei-Hong Chen;Yu-Hsun Chang .Preparation and properties of chitosan/carbon nanotube nanocomposites using poly(styrene sulfonic acid)-modified CNTs[J].Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides,2009(2):232-238.
[19] 纪立军,叶超,梁吉.多壁碳纳米管-炭复合泡沫材料的制备和吸附性能[J].无机化学学报,2007(12):2007-2012.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%