新型β钛合金具有良好的耐磨性和力学性能、高抗腐蚀性以及优良的生物相容性,因而在生物医学领域得到了越来越广泛的应用.综述了钛合金的发展阶段及新型超弹性β钛合金的研究发展状况和最新进展,探讨了几种热处理工艺对钛合金超弹性的影响,介绍了几种钛合金表面改性方法,结合我国研究现状提出了新型超弹性β钛合金存在的问题,展望了其研究发展方向.
参考文献
[1] | Kim H Y;Kim J I;Inamura T et al.Effect of thermo-me chanical treatment on mechanical propcrties and shape memory behavior of Ti-(26-28) at% Nb alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,438-440:839. |
[2] | Miyazaki S;Kim H Y;Hosoda H .Development and cha racterization of Ni-free Ti-base shape memory and superelastic alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,438:18. |
[3] | 刘福,吴树建,王立强.新型医用钛合金的特点及发展现状[J].热加工工艺,2008(12):100-103. |
[4] | Ping D H;Cui C Y;Yin F X et al.TEM investigations on martensite in a Ti-Nb-based shape memory alloy[J].Scripta Materialia,2006,25:1305. |
[5] | Chai Y W;Kim H Y;Hosoda H et al.Self-accommodation in Ti Nb shape memory alloys[J].Acta Materialia,2009,57:4054. |
[6] | Lin DJ;Lin JH;Ju CP .Structure and properties of Ti-7.5Mo-xFe alloys.[J].Biomaterials,2002(8):1723-1730. |
[7] | Zhou T;Aindow M;Alpay S P et al.Pseudo-elastic de formation behavior in a Ti/Mo-based alloy[J].Scripta Materialia,2004,50:343. |
[8] | Sutou Y;Furukawa A;Suzuki M et al.Application of Nifree Ti-Mo-Sn shape memory alloys to medical tools[J].Transactions of the Materials Research Society of Japan,2007,32:639. |
[9] | Huiskes R;Weinans H;Riebergen B .The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials[J].Clinical Orthopaedics and Related Research,1992,274:124. |
[10] | Sumner D;Gatante J .Determinants of stress shielding:De sign versus materials versus interface[J].Clinical Orthopaedics and Related Research,1992,274:202. |
[11] | Niinomi M .Biologically and mechanically biocompatible tita nium alloys[J].Materials Transactions,2008,49:2170. |
[12] | Wang Y B;Zheng Y F .Corrosion behaviour and biocompatibility evaluation of low modulus Ti-16Nb shape memory al loy as potential biomaterial[J].Materials Letters,2009,63:1293. |
[13] | Kim JI;Kim HY;Inamura T;Hosoda H;Miyazaki S .Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):334-339. |
[14] | Hosoda H;Kinoshita Y;Fukui Y et al.Effects of short time heat treatment on superelastic properties of a Ti-Nb-Al biomedical shape memory alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,438-440:870. |
[15] | Inamura T;Fukui Y;Hosoda H et al.Mechanical properties of Ti Nb biomedical shape memory alloys containing Ge or Ga[J].Materials Science and Engineering C:Biomimetic and Supramolecular Systems,2005,25:426. |
[16] | Kim H Y;Hashimoto S;Kim J I et al.Effect of Ta addition on shape memory behavior of Ti-22Nb alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,417:120. |
[17] | Arockiakumar R;Park J K .Effect of[alpha]-precipitation on the superelastic behavior of Ti-40at%Nb-0.3at% O alloy processed by equal channel angular extrusion[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2010,527:2709. |
[18] | Ping D H;Mitarai Y;Yin F X .Microstructure and shape memory behavior of a Ti 30Nb-3Pd alloy[J].Scripta Materialia,2005,52:1287. |
[19] | Gonzalez M;Pena J;Manero J M et al.Design and characterization of new Ti-Nb-Hf alloys[J].Journal of Materials Engineering and Performance,2009,18:490. |
[20] | Hao YL;Li SJ;Sun SY;Zheng CY;Yang R .Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications.[J].Acta biomaterialia,2007(2):277-286. |
[21] | Nobuhito Sakaguchi;Mitsuo Niinomi;Toshikazu Akahori;Junji Takeda;Hiroyuki Toda .Relationships between tensile deformation behavior and microstructure in Ti-Nb-Ta-Zr system alloys[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2005(3):363-369. |
[22] | Niinomi M;Akahori T;Nakai M .In situ X-ray analysis of mechanism of nonlinear super elastic behavior of Ti-Nb-Ta-Zr system beta-type titanium alloy for biomedical applications[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2008(3):406-413. |
[23] | Tane M;Akita S;Nakano T .Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals[J].Acta Materialia,2008,56:2856. |
[24] | 于振涛,郑玉峰,周廉,王本力,牛金龙,皇甫强,张亚锋.新型Ti-3Zr-2Sn-3Mo-15Nb钛合金的形状记忆和超弹性[J].稀有金属材料与工程,2008(01):1-5. |
[25] | Kent D;Wang G;Yu Z et al.Pseudoelastic behaviour of a[beta]Ti-25Nb-3Zr-3Mo-2Sn alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2010,527:2246. |
[26] | Delvat E;Gordin D M;Gloriant T et al.Microstructure,mechanical properties and cytocompatibility of stable beta TbMo-Ta sintered alloys[J].Journal of the Mechanical Behavior of Biomedical Materials,2008,1:345. |
[27] | Kim H Y;Ohmatsu Y;Kim J I et al.Effect of Nb addition on shape memory behavior of Ti-Mo-Ga alloys[J].Materials Transactions,2006,47:518. |
[28] | Kim H Y;Ohmatsu Y;Kim J I et al.Mechanical properties and shape memory behavior of Ti-Mo-Ga alloys[J].Materials Transactions,2004,45:1090. |
[29] | Maeshima T;Nishida M .Shape memory properties of biomedical Ti-Mo-Ag and Ti-Mo-Sn alloys[J].Materials Transactions,2004,45:1096. |
[30] | Maeshima T;Ushimaru S;Yamauchi K et al.Effects of Sn content and aging conditions on superelasticity in biomedical TbMo-Sn alloys[J].Journal of the Japan Institute of Metals,2005,69:654. |
[31] | Maeshima F;Ushimaru S;Yamauchi K et al.Effect of heat treatment on shape memory effect and superelasticity in Ti-Mo-Sn alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,438:844. |
[32] | Xu L J;Chen Y Y;Liu Z G et al.The microstructure and properties of Ti-Mo Nb alloys for biomedical application[J].Journal of Alloys and Compounds,2008,453:320. |
[33] | Buenconsejo P J S;Kim H Y;Hosoda H et al.Shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory alloy[J].Acta Materialia,2009,57:1068. |
[34] | Mareci D;Chelariu R;Gordin DM .Comparative corrosion study of Ti-Ta alloys for dental applications.[J].Acta biomaterialia,2009(9):3625-3639. |
[35] | Li,Y.;Xiong,J.;Wong,C.S.;Hodgson,P.D.;Wen,C. .Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering[J].Tissue engineering, Part A,2009(10):3151-3159. |
[36] | Cui Y;Li Y;Luo K et al.Microstructure and shape memory effect of Ti-20Zr-10Nb alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2010,527:652. |
[37] | Olivcira N T C et al.Development of Ti-Mo alloys for biomedical applications:Microstructure and electrochemical characterization[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2007,452:727. |
[38] | Takemoto Y;Miyake Y;Senuma T .Microstructure and mechanical properties of Ti-Mo and Ti-6Mo-X Y alloys[J].Journal of the Japan Institute of Metals,2009,73:752. |
[39] | Wu M H;Russo P A;Ferrero J G.Pseudoelastic beta Ti-Mo-VNb-Al alloys[A].Los Angeles,California,USA,2004:81. |
[40] | Kim J;Kim H Y;Inamura T et al.Effect of annealing temperature on microstructure and shape memory characteristics of Ti 22Nb-6Zr(at%) biomedical alloy[J].Materials Transactions,2006,47:505. |
[41] | Tahara M;Kim H Y;Hosoda H et al.Cyclic deformation behavior of a Ti-26 at.% Nb alloy[J].Acta Materialia,2009,57:2461. |
[42] | Nakayama Y;Yamamuro T;Kotoura Y et al.In vivo measurement of anodic polarization of orthopaedic implant al loys:Comparative study of in vivo and in vitro experiments[J].Biomaterials,1989,10:420. |
[43] | Nakai, M;Niinomi, M;Akahori, T;Ohtsu, N;Nishimura, H;Toda, H;Fukui, H;Ogawa, M .Surface hardening of biomedical Ti-29Nb-13Ta-4.6Zr and Ti-6Al-4V ELI by gas nitriding[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):193-201. |
[44] | 武丽华,张健,张相春,陈福.医用Ti合金表面生物玻璃涂层的制备与研究[J].山东陶瓷,2008(01):8-10. |
[45] | J. HAN;G. M. SHENG;G. X. HU .Nanostructured Surface Layer of Ti-4Al-2V by Means of High Energy Shot Peening[J].ISIJ International,2008(2):218-223. |
[46] | Mishra R S;Stolyarov V V;Echer C et al.Mechanical behavior and superplasticity of a severe plastic deformation processed nanocrystalline Ti-6Al-4V alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2001,298:44. |
[47] | 郝玉琳,杨锐.纳米高强Ti-Nb-Zr-Sn合金[J].金属学报,2005(11):1183-1189. |
[48] | 顾新丰,蒋垚,韩培,张小农.钛合金表面纳米化对成骨细胞黏附的影响[J].中国临床康复,2006(25):46-48,插图25-3. |
[49] | Wei DQ;Zhou Y;Ha D;Wang YM .Effect of applied voltage on the structure of microarc oxidized TiO2-based bioceramic films[J].Materials Chemistry and Physics,2007(1):177-182. |
[50] | Wei D;Zhou Y;Jia D;Wang Y .Characteristic and in vitro bioactivity of a microarc-oxidized TiO(2)-based coating after chemical treatment.[J].Acta biomaterialia,2007(5):817-827. |
[51] | Wei D;Zhou Y;Yang C .Characteristic and microstructure of the microarc oxidized TiO2-based film containing P before and after chemical-and heat treatment[J].Applied Surface Science,2009,255:7851. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%