{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"声制冷机是一种新型制冷机,具有无机械运动部件,可靠性高寿命长,采用惰性气体为工质无污染等优点.驻波型热声制冷机的声功泵热效应是不可逆过程,内部不可逆损失导致热声制冷机效率偏低,制约了热声制冷机的发展和应用.本文研究了线性范围内驻波型制冷机换热器和回热器内的可压缩振荡流动与传热过程的熵产,分析了板间距,振荡频率和温度梯度对熵产的影响.","authors":[{"authorName":"孟繁孔","id":"2e112d32-833e-4619-8a62-0d353e8a473f","originalAuthorName":"孟繁孔"},{"authorName":"李志信","id":"a163be18-3a60-483e-80af-3d662b1bd468","originalAuthorName":"李志信"}],"doi":"","fpage":"508","id":"66b7093d-b913-445a-af98-3d7f8883e8cf","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"6adc5168-d383-4854-9154-a305bc049eb5","keyword":"驻波型热声制冷机","originalKeyword":"驻波型热声制冷机"},{"id":"bc2998e4-83a8-4415-97d2-eb93c5333b32","keyword":"熵产","originalKeyword":"熵产"},{"id":"ec31d928-d61e-4161-8380-69bb37d79b48","keyword":"振荡流","originalKeyword":"振荡流"},{"id":"2a07df35-5816-4fc7-9a2c-484133a877db","keyword":"换热器","originalKeyword":"换热器"},{"id":"340d694d-3242-484e-9e1a-a33efd38b6e7","keyword":"回热器","originalKeyword":"回热器"}],"language":"zh","publisherId":"gcrwlxb200603047","title":"驻波型热声制冷机熵产分析","volume":"27","year":"2006"},{"abstractinfo":"为了考察惯性管对热声驱动脉管制冷性能的影响,利用驻波型热声驱动脉管制冷实验装置,开展了惯性管结构参数对系统性能影响的实验研究.实验中所采用的惯性管由直径分别为2 mm和4 mm的两段铜管串联而成,重点研究2 mm直径管段的长度对压比和制冷温度的影响.通过实验优化,当惯性管结构参数为内径2 mm的铜管长度2.5 m,内径4 mm的铜管3 m长时,在加热功率1.8 kW条件下,脉管制冷机的无负荷制冷温度达到63.0 K.","authors":[{"authorName":"裘圆","id":"1c184434-36ed-4198-816a-626355d6fa9f","originalAuthorName":"裘圆"},{"authorName":"陈国邦","id":"edbeae41-7f8b-464d-b22a-0fcf27172450","originalAuthorName":"陈国邦"},{"authorName":"汤珂","id":"cb1cf127-3823-4e93-a89b-17c7fdff50b2","originalAuthorName":"汤珂"},{"authorName":"黄忠杰","id":"e3e084e9-03cb-43d2-beda-b5626c3a52ca","originalAuthorName":"黄忠杰"},{"authorName":"杨旭","id":"cf348a8c-ddf4-4cb1-86a1-1805f6a1cfdb","originalAuthorName":"杨旭"},{"authorName":"寿琳","id":"d0edb16c-59a3-4865-a3d2-45afc1e808b4","originalAuthorName":"寿琳"},{"authorName":"包锐","id":"66f07e7b-6067-4346-be76-e9d9cccbd84d","originalAuthorName":"包锐"}],"doi":"","fpage":"1633","id":"8d922df3-4965-46f2-be57-80bb03e92436","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e8e1a10d-0f06-45f6-a2d5-84b29270bee0","keyword":"热声发动机","originalKeyword":"热声发动机"},{"id":"136333e9-2c3c-44c6-849f-568de4e35c93","keyword":"脉管制冷","originalKeyword":"脉管制冷"},{"id":"b5252c39-0b93-416a-a436-c62e313a5032","keyword":"惯性管","originalKeyword":"惯性管"}],"language":"zh","publisherId":"gcrwlxb200810004","title":"惯性管对热声驱动脉管制冷机性能的影响","volume":"29","year":"2008"},{"abstractinfo":"热声制冷的基本原理是热声效应,但热声效应一般只在高声强下发生,随之将产生强烈的非线性效应.本文在自行研制的热声制冷机试验台上,研究了板叠对声场非线性的影响以及非线性对热声系统性能的影响.结果表明,板叠的存在使得声波明显衰减,压比约减小5%,并且各次谐波的幅值和增长速率较无板叠时均有所降低;非线性效应限制了基波的增长,导致了高次谐波产生,且基波和高次谐波的增长均有发展为饱和的趋势.板叠的存在产生明显的声制冷效果,制冷温度随驱动功率增大先增加后减小.在50 W时达到最低温度5.1℃.","authors":[{"authorName":"高凡","id":"3e70ec2d-4eba-4c35-b4e2-7d61e4207110","originalAuthorName":"高凡"},{"authorName":"刘迎文","id":"c2949760-a916-4add-bfe9-0aedbb0a5090","originalAuthorName":"刘迎文"},{"authorName":"何雅玲","id":"16e20f75-3c37-4923-a85a-c13dd85adb4d","originalAuthorName":"何雅玲"},{"authorName":"黄竞","id":"e52e483e-09dc-4050-876a-76adfe4aafda","originalAuthorName":"黄竞"}],"doi":"","fpage":"1990","id":"7e8f8112-88d9-4ce4-99eb-f98b0d05f02a","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4c92c789-8943-4800-b381-7459bfe38d44","keyword":"热声制冷","originalKeyword":"热声制冷"},{"id":"7bad7900-e5f9-43ba-9c31-103762a11c0f","keyword":"非线性","originalKeyword":"非线性"},{"id":"efa112f4-f2e2-4af3-ac12-5dba64c92793","keyword":"试验","originalKeyword":"试验"}],"language":"zh","publisherId":"gcrwlxb200812003","title":"热声制冷机声场中非线性效应","volume":"29","year":"2008"},{"abstractinfo":"双行波热声制冷机因为其内禀的高效率、热驱动及无运动部件的优点,非常有潜力成为常规制冷方式的一种替代技术.为了详细地研究它的工作特点,我们发展了一套较完整的热声模拟程序,可以准确地预测系统工作频率,在一定的误差范围内给出系统的热力性能,并对系统起振的难易程度进行有效的判断.借助于此套程序,我们对行波发动机驱动的行波制冷机进行了数值模拟,主要是对它们之间两种不同的耦合方式(旁通耦合和末端耦合)进行了对比,初步实验结果显示了程序的有效性.","authors":[{"authorName":"戴巍","id":"c56204f3-2d0e-49a8-bc81-148d6daca608","originalAuthorName":"戴巍"},{"authorName":"罗二仓","id":"2db690eb-a9cb-4346-8a40-a2d202a95997","originalAuthorName":"罗二仓"},{"authorName":"余国瑶","id":"73450e01-21b9-40fe-ae2f-aa4696f1ece9","originalAuthorName":"余国瑶"},{"authorName":"胡剑英","id":"d52d7c17-772c-4a5c-a9fc-0100e50b5f14","originalAuthorName":"胡剑英"},{"authorName":"张泳","id":"15e5b899-8dad-4fda-9480-3bd9f4341a38","originalAuthorName":"张泳"}],"doi":"","fpage":"917","id":"8de640ba-c75e-45da-b756-93441bf77786","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2b281c5d-b537-4806-819a-0d787eaa036d","keyword":"行波","originalKeyword":"行波"},{"id":"d53a4bf8-3286-40dc-b38d-9286fe68041b","keyword":"热声发动机","originalKeyword":"热声发动机"},{"id":"2bb61d6a-213d-4898-8df1-d45f1b358a7e","keyword":"热声制冷机","originalKeyword":"热声制冷机"},{"id":"707da68c-2a4a-44a9-a1f4-3573a749a0dc","keyword":"耦合","originalKeyword":"耦合"}],"language":"zh","publisherId":"gcrwlxb200606006","title":"双行波热声制冷机耦合方式研究","volume":"27","year":"2006"},{"abstractinfo":"热声驱动脉管制冷机主要由热声发动机和脉管制冷机组成,是一种完全无运动部件的新型低温制冷机.本文在实验室现有行波热声发动机的基础上,运用线性热声理论对两级脉管制冷机进行了设计,并用声学放大器对热声发动机和脉管制冷机进行耦合,提高脉管制冷机的驱动压比,从而获得了41 K的低温,这是目前热声驱动脉管制冷机所获得的最低制冷温度.正因为本热声驱动脉管制冷机系统的热驱动特性及其主要部件都是按照热声理论进行设计,所以我们将其称为热驱动低温热声制冷机.","authors":[{"authorName":"胡剑英","id":"3750132a-e2ce-4630-80dc-bd90eef02ea4","originalAuthorName":"胡剑英"},{"authorName":"戴巍","id":"c027c519-931c-4897-aaed-ecab31175f27","originalAuthorName":"戴巍"},{"authorName":"罗二仓","id":"2879070b-1cc0-4c80-a9ad-c190b73e27d5","originalAuthorName":"罗二仓"}],"doi":"","fpage":"189","id":"a08c1e58-56fa-439a-ae58-aa65c0e54c25","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"95a360b8-3aa0-4db0-be91-164fe1e82b20","keyword":"低温热声制冷机","originalKeyword":"低温热声制冷机"},{"id":"f8c786e2-0e44-4951-ad09-bc0a32ae3694","keyword":"线性热声理论","originalKeyword":"线性热声理论"},{"id":"49d8dc05-3ab5-429d-a19c-1263119abc45","keyword":"声学放大器","originalKeyword":"声学放大器"}],"language":"zh","publisherId":"gcrwlxb200602003","title":"40K温区的热驱动低温热声制冷机","volume":"27","year":"2006"},{"abstractinfo":"用构形理论对热声制冷机平板型回热器进行了优化,导出了最优平板间距及最优平板数的解析式,讨论了运行频率、温度梯度、以及平板厚度对最优平板间距的影响,所得结论对实际热声制冷机的设计工作具有一定的理论指导意义.","authors":[{"authorName":"阚绪献","id":"fffe8cc6-c6a7-4158-928e-b50decc960ee","originalAuthorName":"阚绪献"},{"authorName":"吴锋","id":"bfa45104-7aba-4dbd-a521-3c1004f68782","originalAuthorName":"吴锋"},{"authorName":"张晓青","id":"fe3674ce-a569-45be-97e9-efd97cf4ed3e","originalAuthorName":"张晓青"},{"authorName":"郭方中","id":"1be18de5-4a44-4ad3-934e-b3b3783da21e","originalAuthorName":"郭方中"},{"authorName":"杨志春","id":"dbc9e46d-e9ac-4ec5-bc1b-090d94380709","originalAuthorName":"杨志春"}],"doi":"","fpage":"11","id":"db3e41bd-fd9c-4519-ae50-4239b83f9f41","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"b1e81e85-4f3b-4394-a9af-ab5d3e30f381","keyword":"热声制冷机","originalKeyword":"热声制冷机"},{"id":"774b4d71-90aa-488e-a560-12ed146da701","keyword":"平行板叠","originalKeyword":"平行板叠"},{"id":"f52df4cb-896b-459e-955a-dfb9507de4ad","keyword":"制冷量","originalKeyword":"制冷量"},{"id":"0a175e9c-6f4f-4248-bad8-57206b53fe34","keyword":"构形理论","originalKeyword":"构形理论"}],"language":"zh","publisherId":"gcrwlxb201001003","title":"热声制冷机回热器的构形优化","volume":"31","year":"2010"},{"abstractinfo":"在原有单级脉管制冷机的基础上,设计并研制了一台声功回收级联型脉管制冷机.实验结果表明,在输入电功为500 W时,无负荷制冷温度为主级123.3 K,辅级131.0 K,主级制冷量为143.7W@233.0K,辅级制冷量为62.9W@233.0 K,其总和206.6 W@233.0 K,高于相同输入功时单级脉管制冷机的理论模拟值189.6 W@233 K,验证了声功回收方案的可行性,不仅是对回热式低温制冷法在普冷温区实践的一次有益探索,而且为更低温度大制冷量脉管制冷机声功的回收奠定了基础.","authors":[{"authorName":"王龙一","id":"443c8def-b793-4319-9612-38a2bffb5f96","originalAuthorName":"王龙一"},{"authorName":"甘智华","id":"658487b1-3b2c-4d17-9c63-2fdb718ce421","originalAuthorName":"甘智华"},{"authorName":"吴镁","id":"98475b59-9bfa-47fb-aa7c-0059aa5af431","originalAuthorName":"吴镁"},{"authorName":"宋豫京","id":"af476020-49b9-4195-94b4-0ddee5bc6d49","originalAuthorName":"宋豫京"},{"authorName":"朱佳凯","id":"f65b0332-0ab8-4fce-a79c-9b55611e0e7f","originalAuthorName":"朱佳凯"},{"authorName":"赵胜颖","id":"0a9a5888-6d0c-4cf5-9818-5d28b246f89f","originalAuthorName":"赵胜颖"}],"doi":"","fpage":"949","id":"1f6d05c1-ffdd-444c-b753-43f7cf43a7b6","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1baf3406-dc64-45c4-9470-864b77ed49a7","keyword":"普冷温区","originalKeyword":"普冷温区"},{"id":"c1bbe2d7-6c9f-4f7d-be6c-5f0f2967c546","keyword":"脉管制冷","originalKeyword":"脉管制冷"},{"id":"48ce7e2f-9f50-40b8-8594-a273ae283421","keyword":"Sage","originalKeyword":"Sage"},{"id":"5bbac43d-9e04-4eeb-a434-82a37f4ed755","keyword":"线性压缩机","originalKeyword":"线性压缩机"},{"id":"82a9c33e-a816-4d79-aa97-1b76322ff412","keyword":"声功回收","originalKeyword":"声功回收"}],"language":"zh","publisherId":"gcrwlxb201505006","title":"声功回收级联型脉管制冷机实验研究","volume":"36","year":"2015"},{"abstractinfo":"本文报道了热声驱动的室温行波热声制冷机的实验研究.以氦气为工质研究了平均充气压力、工作频率等参数对制冷性能的影响.实验达到的最好结果为:最低温度为-47℃,在-20℃的制冷量为80 W,按输入制冷机的P-V功计算,相应的制冷系数COP达到1.6左右.","authors":[{"authorName":"黄云","id":"bf3279e7-03e9-4024-b27e-7608868d5fab","originalAuthorName":"黄云"},{"authorName":"罗二仓","id":"49f0a076-02d8-485d-b569-36ec6d3013b5","originalAuthorName":"罗二仓"},{"authorName":"戴巍","id":"1d211548-ba29-40f7-b186-1039fd184121","originalAuthorName":"戴巍"},{"authorName":"张泳","id":"ae054cc3-bd3d-416a-b56c-8136579fbed2","originalAuthorName":"张泳"},{"authorName":"吴张华","id":"82a5a7cf-28e8-4ccb-9a50-7df1480d8ef5","originalAuthorName":"吴张华"},{"authorName":"胡剑英","id":"f0e15788-2174-463f-9fe9-abd684fbd4bb","originalAuthorName":"胡剑英"},{"authorName":"吴剑峰","id":"b0ad2173-acbe-41b7-88f2-020af0bc8454","originalAuthorName":"吴剑峰"}],"doi":"","fpage":"199","id":"a2117fed-5707-4d10-9b48-76666e6f13d0","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ccdd8021-3599-4c2e-816a-2f98ce986586","keyword":"热声驱动","originalKeyword":"热声驱动"},{"id":"4fb219ef-9874-4646-899d-36c83e3b7145","keyword":"行波热声制冷机","originalKeyword":"行波热声制冷机"},{"id":"e10510b7-44e7-41c7-a1d2-c8b04ee03e55","keyword":"室温制冷","originalKeyword":"室温制冷"}],"language":"zh","publisherId":"gcrwlxb200502006","title":"热驱动室温行波热声制冷机的实验研究","volume":"26","year":"2005"},{"abstractinfo":"热声发动机驱动的脉管制冷机是一种完全无运动部件的低温制冷机,具有非常好的应用前景,本文介绍了本实验室在这方面取得的最新进展.首先我们对驻波热声发动机进行了改进设计,提高了其驱动压比,用氦气作为工质最大压比达到了1.15.在此基础上我们用其驱动同轴双向进气小孔型脉管制冷机,通过调整热声发动机的振荡频率,使之与脉管达到匹配,最终达到了84.3 K的最低制冷温度,这也是目前用驻波热声发动机驱动脉管所达到的最低制冷温度.同时,在此实验过程中,一些抑制跳频的方法也得到了实验验证.","authors":[{"authorName":"罗二仓","id":"2c79a7e5-fffd-4aa6-a10f-46eaed67c1f0","originalAuthorName":"罗二仓"},{"authorName":"戴巍","id":"5ab91ade-4b13-44d3-a8c3-b9caeba5ff7a","originalAuthorName":"戴巍"},{"authorName":"胡剑英","id":"8c6c5998-26c1-45fa-9e8d-052a69e8a9f5","originalAuthorName":"胡剑英"},{"authorName":"吴张华","id":"f57a8007-24cb-4011-b282-285ac7fd1cf0","originalAuthorName":"吴张华"},{"authorName":"黄云","id":"a6e12323-d857-40a4-bfdc-300d52925b35","originalAuthorName":"黄云"},{"authorName":"张泳","id":"e8165a66-e02f-4fbc-8d43-011cd5b42c35","originalAuthorName":"张泳"},{"authorName":"周远","id":"4742cec5-d1f7-4a2f-a86a-c50b68453f38","originalAuthorName":"周远"},{"authorName":"朱文秀","id":"c2c6c863-6ee3-48e2-8adc-628057cc5f5f","originalAuthorName":"朱文秀"}],"doi":"","fpage":"33","id":"5d5404a9-d250-4f41-93f4-4ed7f27a8f89","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c922d461-2349-4292-b058-3c9c11e0dc37","keyword":"驻波","originalKeyword":"驻波"},{"id":"84fe020e-6cbc-440c-9e8c-0242eeb1b600","keyword":"热声发动机","originalKeyword":"热声发动机"},{"id":"3414b7e6-d879-4993-a10c-0ed7e5661942","keyword":"脉管制冷机","originalKeyword":"脉管制冷机"}],"language":"zh","publisherId":"gcrwlxb2005z1009","title":"液氮温区热声驱动脉管制冷机的研究","volume":"26","year":"2005"},{"abstractinfo":"热声制冷机由于结构简单、无运动部件,具有广阔的应用前景。本文在已有的小型行波热声发动机的基础上,开展了热声制冷的工作。利用线性热声理论对制冷机进行数值模拟,并对制冷机的各热声元件优化。优化后,系统整体装配横向尺寸仅0.5 m,在充气压力3 MPa,发动机输入功率384 W的条件下,达到了80 K的无负载温度。由于本制冷机由行波型热声发动机驱动,并且是通过线性热声理论优化,因此称之为小型行波低温热声制冷机。","authors":[{"authorName":"黄鑫","id":"68e0f167-6d70-4efd-96e5-c23a5166fd7e","originalAuthorName":"黄鑫"},{"authorName":"周刚","id":"6f08bb09-5977-44af-8ad3-16fd498c5529","originalAuthorName":"周刚"},{"authorName":"李青","id":"bd0f0618-ef6e-4a4f-b774-83d923f22dfc","originalAuthorName":"李青"}],"doi":"","fpage":"557","id":"fccd7090-8e4c-4836-af82-ee279ac3ccf5","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"cc51cf34-c32e-41e3-800f-aca43f3c4f54","keyword":"高频","originalKeyword":"高频"},{"id":"3e188106-7dd4-4ea1-92c6-b13be5f0653f","keyword":"行波","originalKeyword":"行波"},{"id":"80522369-eb56-4c42-9ba9-9d14e0c63a0b","keyword":"热声发动机","originalKeyword":"热声发动机"},{"id":"2e74f275-7bb0-4d03-b092-58b2ee46de74","keyword":"脉冲管制冷机","originalKeyword":"脉冲管制冷机"},{"id":"bd843f1f-7655-4bd5-9fe5-9a3f5327a341","keyword":"回热器","originalKeyword":"回热器"}],"language":"zh","publisherId":"gcrwlxb201204004","title":"80 K温区的小型行波低温热声制冷机","volume":"33","year":"2012"}],"totalpage":5316,"totalrecord":53151}