欢迎登录材料期刊网

材料期刊网

高级检索

生物医用钛合金具有高强度、良好的耐蚀性能、较低的弹性模量、优异的生物相容性,已成为具有广阔应用前景的医用金属材料之一.与传统医用钛合金相比,超细晶医用钛合金具有更高的强度与更好的疲劳性能以及耐腐蚀性能.此外,超细晶钛合金可诱导骨组织向内生长,增加界面结合强度,加快骨修复进程,在硬组织修复材料领域具有广阔的应用前景.阐述了各种大塑性变形(Severe Plastic Deformation)法制备超细晶生物医用钛合金的研究状况与最新进展,指出了SPD法制备医用钛合金中存在的技术问题和发展方向,并展望了利用SPD法对生物医用钛合金改性将成为生物医用材料的研究热点.

参考文献

[1] Rack HJ;Qazi JI .Titanium alloys for biomedical applications[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2006(8):1269-1277.
[2] MITSUO NIINOMI .Recent Metallic Materials for Biomedical Applications[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2002(3):477-486.
[3] Sell SA;McClure MJ;Garg K .Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering.[J].Advanced drug delivery reviews,2009(12):1007-1019.
[4] Niinomi M .Metallic biomaterials.[J].Journal of artificial organs: The official journal of the Japanese Society for Artificial Organs,2008(3):105-110.
[5] Sumner DR;Turner TM;Igloria R;Urban RM;Galante JO .Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness.[J].Journal of Biomechanics,1998(10):909-917.
[6] Niinomi M .Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr.[J].Biomaterials,2003(16):2673-2683.
[7] Banerjee R;Nag S;Samuel S;Fraser HL .Laser-deposited Ti-Nb-Zr-Ta orthopedic alloys.[J].Journal of biomedical materials research, Part A,2006(2):298-305.
[8] Liqiang Wang;Weijie Lu;Jining Qin .Change in Microstructures and Mechanical Properties of Biomedical Ti-Nb-Ta-Zr System Alloy through Cross-Rolling[J].Materials Transactions,2008(8):1791-1795.
[9] Elias LM;Schneider SG;Schneider S;Silva HM;Malvisi E .Microstructural and mechanical characterization of biomedical Ti-Nb-Zr(-Ta) alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1-2):108-112.
[10] Liqiang Wang;Weijie Lu;Jining Qin .The characterization of shape memory effect for low elastic modulus biomedical β-type titanium alloy[J].Materials Characterization,2010(5):535-541.
[11] Hee Young Kim;Yoshinori Ohmatsu;Jae Il Kim .Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga Alloys[J].Materials transactions,2004(4):1090-1095.
[12] Ruslan Z. Valiev;Terence G. Langdon .Principles of equal-channel angular pressing as a processing tool for grain refinement[J].Progress in materials science,2006(7):881-981.
[13] Valiev RZ.;Alexandrov IV.;Islamgaliev RK. .Bulk nanostructured materials from severe plastic deformation [Review][J].Progress in materials science,2000(2):103-189.
[14] Segal VM. .Severe plastic deformation: simple shear versus pure shear[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):331-344.
[15] Alexander P. Zhilyaev;Terence G. Langdon .Using high-pressure torsion for metal processing: Fundamentals and applications[J].Progress in materials science,2008(6):1-1.
[16] Raducanu D;Vasilescu E;Cojocaru VD;Cinca I;Drob P;Vasilescu C;Drob SI .Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.[J].Journal of the mechanical behavior of biomedical materials,2011(7):1421-1430.
[17] Y. Saito;N. Tsuji;H. Utsunomiya;T. Sakai;R. G. Hong .Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J].Scripta materialia,1998(9):1221-1227.
[18] C. G. Rhodes;M. W. Mahoney;W. H. Bingel;R. A. Spurling;C. C. Bampton .Effects of friction stir welding on microstructure of 7075 aluminum[J].Scripta materialia,1997(1):69-75.
[19] Jian-Qing Su;Tracy W. Nelson;Colin J. Sterling .A new route to bulk nanocrystalline materials[J].Journal of Materials Research,2003(8):1757-1760.
[20] Ruslan Z. Valiev;Terence G. Langdon .Principles of equal-channel angular pressing as a processing tool for grain refinement[J].Progress in materials science,2006(7):881-981.
[21] 杨西荣,赵西成,付文杰.工业纯钛在120°模具中的多道次ECAP室温变形组织与性能[J].稀有金属材料与工程,2009(06):955-957.
[22] Zhao, X.;Yang, X.;Liu, X.;Wang, X.;Langdon, T.G. .The processing of pure titanium through multiple passes of ECAP at room temperature[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(23):6335-6339.
[23] Kim I.;Kim J.;Shin DH.;Lee CS.;Hwang SK. .Effects of equal channel angular pressing temperature on deformation structures of pure Ti[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):302-310.
[24] I.P. Semenova;G.I. Raab;L.R. Saitova;R.Z. Valiev .The effect of equal-channel angular pressing on the structure and mechanical behavior of Ti-6Al-4V alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):805-808.
[25] L. R. Saitova;H. W. Hoppel;M. Goken;I. P. Semenova;R. Z. Valiev .Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6Al-4V ELI alloy for medical use[J].International Journal of Fatigue,2009(2):322-331.
[26] Saitova, LR;Hoeppela, HW;Goeken, M;Semenova, IP;Raab, GI;Valiev, RZ .Fatigue behavior of ultrafine-grained Ti-6Al-4V 'ELI' alloy for medical applications[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):145-147.
[27] W. Xu;X. Wu;M. Calin .Formation of an ultrafine-grained structure during equal-channel angular pressing of a beta-titanium alloy with low phase stability[J].Scripta materialia,2009(11):1012-1015.
[28] A. Vinogradov;S. Hashimoto .Fatigue of severely deformed metals[J].Advanced Engineering Materials,2003(5):351-358.
[29] A. Balyanov;J. Kutnyakova;N. A. Amirkhanova;V. V. Stolyarov;R. Z. Valiev;X. Z. Liao;Y. H. Zhao;Y. B. Jiang;H. F. Xu;T. C. Lowe .Corrosion resistance of ultra fine-grained Ti[J].Scripta materialia,2004(3):225-229.
[30] Ruslan Z. Valiev;Yuri Estrin;Zenji Horita .Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation[J].JOM,2006(4):33-39.
[31] A.V. Sergueeva;V.V. Stolyarov;R.Z. Valiev .Advanced mechanical properties of pure titanium with ultrafine grained structure[J].Scripta materialia,2001(7):747-752.
[32] V.V. Stolyarov .Mechanical and Functional Properties of Titanium Alloys Processed by Severe Plastic Deformation[J].Materials Science Forum,2011(TN.683):137-148.
[33] Yilmazer,H.;Niinomi,M.;Nakai,M.;Hieda,J.;Todaka,Y.;Akahori,T.;Miyazaki,T..Heterogeneous structure and mechanical hardness of biomedical β-type Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion[J].Journal of the mechanical behavior of biomedical materials,2012:235-245.
[34] 张兵,袁守谦,吕爽,张西峰,王超.ARB工艺对1060工业纯铝组织和性能的影响[J].稀有金属,2008(02):135-139.
[35] Terada D;Inoue S;Tsuji N .Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process[J].Journal of Materials Science,2007(5):1673-1681.
[36] Milner, J.L.;Abu-Farha, F.;Bunget, C.;Kurfess, T.;Hammond, V.H..Grain refinement and mechanical properties of CP-Ti processed by warm accumulative roll bonding[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:109-117.
[37] Vasile-Danut Cojocaru;Doina Raducanu;Doina Margareta Gordin.Texture evolution during ARB (Accumulative Roll Bonding) processing of Ti-10Zr-5Nb-5Ta alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2013:260-269.
[38] Raducanu D;Vasilescu E;Cojocaru VD;Cinca I;Drob P;Vasilescu C;Drob SI .Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.[J].Journal of the mechanical behavior of biomedical materials,2011(7):1421-1430.
[39] Kent D;Wang G;Yu Z;Ma X;Dargusch M .Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique.[J].Journal of the mechanical behavior of biomedical materials,2011(3):405-416.
[40] Mishra RS;Ma ZY .Friction stir welding and processing[J].Materials Science & Engineering, R. Reports: A Review Journal,2005(1/2):III-0.
[41] S.S. BABU;J.C. LIPPOLD;J. LIVINGSTON .Physical Simulation of Deformation and Microstructure Evolution During Friction Stir Processing of Ti-6Al-4V Alloy[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2013(8):3577-3591.
[42] Corrosion behaviour of investment cast and friction stir processed Ti-6Al-4V[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2010(9):P.3062.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%