本文介绍用化学共沉淀和在适当温度下煅烧以直接制备YAG-Al2O3纳米复合粉体的新方法.XRD结果表明,所得粉体具纯的YAG和α-Al2O3相,因此其化学组成符合配料的组分设计.用本方法制备的25vol%YAG-Al2O3复合粉体经热压烧结,所得的致密体材料为晶内型纳米复合材料,其抗育强度达 612MPa,断裂韧性为 4.54MPa·m-1/2,都比单相 Al2O3陶瓷有大幅度提高。
25vol%YAG-Al2O3 nanocomposite powders were prepared by the co-precipitaion method from ytrium nitrate and aluminium nitrate as starting materials.
The XRD pattern for the prepared powder calcined at 1300℃ for 1h shows well-defined peaks whose positions are almost identical
to those of stoichometic YAG and α-Al2O3. The powder compacts by hot-press sintering for 0.5 h at 1400℃ and 300MPa reached
a density close to the thoretical, while the normally reported hot-press sintering temperature for YAG-Al2O3 composites is 1600℃.
The bending strength and fracture toughness of prepared 25vol%YAG-Al2O3 nanocomposite were 612 MPa and 4.54 MP·m-1/2, respectively,
which are much higher than those of monolithic Al2O3 and monolithic YAG, as well as higher than those reported in other studies for YAG-Al2O3
composites. Microstructure studies found that the nano-YAG particles were mainly located within the Al2O3 grains.
参考文献
[1] | Parthasarathy T A, Mah T, Keller K. J. Amer. Ceram. Soc., 1992, 75: 1756--1759. [2] Corman G S. Ceram Eng. Sci. Proc., 1991, 12: 1745--1766. [3] Matson L E, Hay R S, Mah T. Ceram. Eng. Sci. Proc., 1990, 11: 995--1003. [4] Gao L, Wang H Z, Hong J S, et al. J. Euro. Ceram. Soc., 1999, 19: 609--613. [5] Wang H Z, Gao L, Gui L H, et al. Nanostructured Materials, 1998 10: 947--953. [6] Warshaw I, Roy R. J. Amer. Ceram. Soc., 1959, 42: 434--438. [7] Viechnicki D, Caslavsky J. Amer. Ceram. Soc. Bull., 1979, 58: 790--791. [8] Gao L, Shen Z J, Miyamoto H, et al. J. Amer. Ceram. Soc., 1999, 82: 1061--1063. [9] Niihara K. J. Ceram Soc. Jpn., 1991, 99: 974--982. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%