采用高能球磨机械合金化法制备了Au-20%Sn合金,分析了合金物相、组织和硬度随球磨时间的变化规律,探讨了合金塑性与合金组织及制备工艺的关系.结果表明:采用高能球磨机械合金化法可以制备Au-20%Sn合金;随球磨时间的增加,Au-20%Sn的合金化程度增加,组织中的金属间化合物逐渐增多,最终基本上为8相和ζ'相;合金的硬度随球磨时间的延长逐渐升高,并在球磨60 min后获得最高硬度104.2 HV,然后开始下降;球磨后的合金粉末在190℃×2 h的烧结过程中发生了不同程度的再结晶和晶粒长大,再结晶程度随球磨时间的延长而增加,导致烧结后合金硬度在球磨时间超过60 min后反而下降.
Au-20% Sn alloy was prepared by mechanical alloying of the mixture of Au and Sn powders and vacuum sintering process.The phases,microstructure and microhardness of Au-20% Sn alloy were analyzed,and the relationship among plasticity and microstructure and preparing process of Au-20% Sn alloy was discussed.The results show that Au-20% Sn alloy can be prepared by mechanical alloying.As the ball milling time of the powders increases,intermetallic compounds gradually form in the Au-20% Sn alloy and finally the microstructure of Au-20% Sn alloy is mainly composed of δ and ζ' phases.Microhardness of the alloy increases with increasing of the ball milling time,to the maximum value of 104.2 HV for the ball milling time of 60 min,and then the microhardness decreases.In the process of sintering at 190 ℃ for 2 h,recrystallization and crystal growth are observed,and the recrystallizing degree increases for the milled powders with increasing of the ball milling time and causes the decrease of the microhardness of Au-20% Sn alloy.
参考文献
[1] | Ivey D G .Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications[J].Micron,1998,29(04):281-287. |
[2] | Doesburg J.;Ivey DG. .Microstructure and preferred orientation of Au-Sn alloy plated deposits[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2000(1):44-52. |
[3] | 刘泽光,陈登权,罗锡明,许昆.金锡钎料性能及应用[J].电子与封装,2004(02):24-26,40. |
[4] | J.Y.Tsai;C.W.Chang;Y.C.Shieh .Controlling the Microstructures from the Gold-Tin Reaction[J].Journal of Electronic Materials,2005(2):182-187. |
[5] | T. Yamada;K. Miura;M. Kajihara .Kinetics of reactive diffusion between Au and Sn during annealing at solid-state temperatures[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):118-126. |
[6] | 朱建国;金凯.金锡合金钎料的制备方法[J].有色金属与稀土应用,2008(02):1-10. |
[7] | Okamoto H;Massalski T B.Phase Diagram of Binary Gold Alloys[M].Ohio:Metals Park,1990 |
[8] | McFadden S X;Mishra R S;Valiev R Z et al.Low-tempera ture superplasticity in nanostruetured nickel and metal alloys[J].Nature,1999,398:684-686. |
[9] | Mcfadden S X;Sergueeva A V;Mukherjee A K .Tensile superplesticity in nanomaterials:Some observations and reflections[J].Materials Science Forum,2001,357-359:499-506. |
[10] | Wang Y;Chen M;Zhou F;Ma E .High tensile ductility in a nanostructured metal.[J].Nature,2002(6910):912-915. |
[11] | X. Zhang;H. Wang;R. O. Scattergood;J. Narayan;C. C. Koch;A. V. Sergueeva;A. K. Mukherjee .Tensile elongation (110%) observed in ultrafine-grained Zn at room temperature[J].Applied physics letters,2002(5):823-825. |
[12] | Koch C C .Synthesis of nanostructured materials by mechanical milling:problems and opportunities[J].Nano-Structured Materials,1997,9:13-22. |
[13] | Zhu X K;Zhang X;Wang H et al.Synthesis of bulk nanostructurod Zn by combinations of cryomilling and powder consolidation by room temperature milling:optimizing mechanical properties[J].Scripta Materialia,2003,49:429-433. |
[14] | Lu L;Sui M L;Lu K .Superplastic extensibility of nanocrystalline copper at room temperature[J].Science,2000,287:1463-1466. |
[15] | Suryanarayana C;Koch C C .Nanocrystalline materials-current research and future[J].Hyperfine Interactions,2000,130:5-6. |
[16] | 李才巨,张继东,朱心昆,史冰川,唐海林,林杰,徐孟春.高能球磨法制备纯铝纳米晶材料的研究[J].粉末冶金技术,2006(06):457-459. |
[17] | C. Suryanarayana .Mechanical alloying and milling[J].Progress in materials science,2001(1/2):1-184. |
[18] | Li C J;Zhu X K;Chen T L.Study on the preparation of nanocrystalline pure Cu by ball milling and the effect of annealing on the hardness of it[A].Gyeongiu,Korea,2005:515-517. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%