材料热处理学报, 2009, 30(3): 71-75.
6061铝合金超细晶制备及其组织性能的研究
罗许 1, , 史庆南 2, , 刘韶华 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究Q235钢表面等离子W-Mo-Y共渗层的组织、成分、结构、显微硬度,计算渗层中不同位置、浓度下的W、Mo原子扩散系数。结果表明:渗层组织为柱状晶,W、Mo元素呈梯度分布,Y的分布不均匀。共渗层主要结构相为钨钼在α-Fe中的固溶体和Fe17Y2,共渗层显微硬度最高256 HV0.05;Y元素降低表面W、Mo的活度,W、Mo合金元素的化学势变小,表面与基体之间的化学梯度减小,W、Mo原子扩散速率减慢;W-Mo-Y共渗层厚度要比W-Mo共渗层厚度薄;通过Fick第二扩散定律计算表明,在W-Mo-Y共渗和W-Mo共渗时,不同渗层中的W、Mo扩散系数有所不同,但属同一数量级即:10-13~10-14之间。","authors":[{"authorName":"高原","id":"161b419e-ebad-4cea-9f15-2d9732eab6e7","originalAuthorName":"高原"},{"authorName":"张维","id":"a1ee076f-80f4-4342-831a-88fcf8543d38","originalAuthorName":"张维"},{"authorName":"王成磊","id":"b07153ac-7d39-4b71-adf4-adb7544dd314","originalAuthorName":"王成磊"},{"authorName":"李冰","id":"769d47ef-c4b8-4ffd-b3e0-8a115a723e60","originalAuthorName":"李冰"},{"authorName":"陈选楠","id":"fd47eef3-6cf4-483c-8b4d-def3540018ce","originalAuthorName":"陈选楠"},{"authorName":"黄学锋","id":"a32104c5-5e46-421e-b52d-cdff5cc70243","originalAuthorName":"黄学锋"},{"authorName":"袁琳","id":"dd855b0d-b2e2-4006-86f7-54a8601fb5e8","originalAuthorName":"袁琳"}],"doi":"","fpage":"130","id":"b59eda65-4fb8-4c95-b995-2de6c6c4a0c1","issue":"7","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"fd256ce3-4757-4832-82c8-53e246e44824","keyword":"等离子渗金属","originalKeyword":"等离子渗金属"},{"id":"fe16ba87-8e9a-4328-be77-057aeb93d15e","keyword":"晶界","originalKeyword":"晶界"},{"id":"3f310756-988a-4f50-8ee9-e44d77a56c01","keyword":"活度","originalKeyword":"活度"},{"id":"00880404-0c85-4aa8-b7e3-672a8537de18","keyword":"化学梯度","originalKeyword":"化学梯度"},{"id":"497d8be8-30d2-47d5-90db-92f659fbcd3c","keyword":"化学势","originalKeyword":"化学势"},{"id":"03ed8790-4910-4d6d-aab3-7b599d100da6","keyword":"Fick第二扩散定律","originalKeyword":"Fick第二扩散定律"}],"language":"zh","publisherId":"jsrclxb201107024","title":"W-Mo-Y等离子共渗合金层的研究","volume":"32","year":"2011"},{"abstractinfo":"研究了梯度复合镀层Ni-P/Ni-P-PTFE/Ni-Cu-P-PTFE的形成工艺,探讨了镀液的温度、pH值、阳离子表面活性剂浓度、PTFE浓度以及镀层中的铜含量对Ni-Cu-P-PTFE镀层的沉积速度、组成和耐蚀性的影响.分别用数字测微计和能量分散X射线光谱测量了涂层厚度和组成.Ni-Cu-P-PTFE镀层在HCl和NaCl溶液中的抗蚀性研究表明,Ni-Cu-P-PTFE镀层的耐蚀性优于Ni-P-PTFE镀层和铜.","authors":[{"authorName":"王云芳","id":"2b5e3c91-f865-4214-a1b4-e9cc632883df","originalAuthorName":"王云芳"},{"authorName":"王汝敏","id":"ee10d062-1bfb-401c-9e13-11abc8c636f8","originalAuthorName":"王汝敏"},{"authorName":"郭增昌","id":"ae87ec3e-fe3d-4e56-926a-7d1b24207f51","originalAuthorName":"郭增昌"}],"doi":"10.3969/j.issn.1005-0299.2006.05.014","fpage":"499","id":"086af709-80ef-47ca-97e8-35999f92da21","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"a19b0fb0-099a-416d-9b5f-95cba68494f1","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"357ac562-1056-42f5-928d-5a43760a64fa","keyword":"复合梯度镀层","originalKeyword":"复合梯度镀层"},{"id":"f280addf-283e-4385-9adb-0f2d0b463d99","keyword":"Ni-Cu-P-PTFE","originalKeyword":"Ni-Cu-P-PTFE"},{"id":"0dc34d03-c55a-4550-84ee-4d22d01f9be7","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clkxygy200605014","title":"化学复合镀梯度镀层工艺研究","volume":"14","year":"2006"},{"abstractinfo":"简要分析了化学液相热梯度致密C/C的沉积过程及机理,该工艺用一种液态碳源作基体前驱体,采用梯度加热法,可实现快速致密.结果表明,与传统化学气相致密法相比,该技术能在很短时间(2.5 h)内能迅速提高基质材料的密度.","authors":[{"authorName":"张晓虎","id":"9bacd718-ccdd-4473-b8eb-741bcbf5a619","originalAuthorName":"张晓虎"},{"authorName":"马伯信","id":"79a33da7-33dc-4042-97db-f69a42657bee","originalAuthorName":"马伯信"},{"authorName":"霍肖旭","id":"b7f34a84-6590-4a66-8194-4df1da64d3ab","originalAuthorName":"霍肖旭"}],"doi":"10.3969/j.issn.1007-2330.2002.03.005","fpage":"22","id":"738321b8-0e4e-45f6-84b5-c2515b180149","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"5d88f280-b4da-4c0a-8108-37b20c5fcf3d","keyword":"化学液相热梯度","originalKeyword":"化学液相热梯度"},{"id":"ded06bd8-332e-4179-a121-3ff3db1af276","keyword":"液态碳源","originalKeyword":"液态碳源"},{"id":"39f5f9b4-3d89-4006-8619-7c46bb3bbf39","keyword":"快速致密","originalKeyword":"快速致密"}],"language":"zh","publisherId":"yhclgy200203005","title":"化学液相热梯度致密C/C技术探索","volume":"32","year":"2002"},{"abstractinfo":"通过对化学镀Ni-P-SiC复合镀层的研究,找到了制备SiC/Ni-P功能梯度材料(FGM)的工艺方法.并采用光学显微镜、电子探针分析仪及热震试验等方法和手段对功能梯度材料的组织、形貌、成分与镀层结合力进行了研究.结果表明,功能梯度材料中SiC微粒以弥散状态沿镀层厚度方向呈梯度分布,无团聚结块现象,材料致密,组织细小.功能梯度材料较单层Ni-P-SiC复合镀层以及Ni-P/Ni-P-SiC双层镀层具有更好的结合强度.","authors":[{"authorName":"徐智谋","id":"68adfd6c-94b3-4983-92fe-56f1ebfafaa2","originalAuthorName":"徐智谋"},{"authorName":"董泽华","id":"6fbeb823-20f3-4651-ad4d-83b087f843fd","originalAuthorName":"董泽华"},{"authorName":"郑家燊","id":"1ed45c23-3e4c-4a47-a9f9-06c978b7ba1a","originalAuthorName":"郑家燊"}],"doi":"10.3969/j.issn.1007-2330.1999.05.012","fpage":"48","id":"7a15e639-d568-4190-be90-1920559f51d4","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"a6f58b3a-6869-42ca-bf57-91f839277e42","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"f2e0d024-cc16-4d8a-90c7-f20012989bf2","keyword":"SiC微粒","originalKeyword":"SiC微粒"},{"id":"af8a597a-8179-46e2-9555-f4d6bfd97cde","keyword":"Ni-P-SiC复合镀层","originalKeyword":"Ni-P-SiC复合镀层"},{"id":"67686685-a295-4bcf-98ce-36ac533e8523","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"}],"language":"zh","publisherId":"yhclgy199905012","title":"化学镀SiC/Ni-P功能梯度材料工艺、组织及性能","volume":"29","year":"1999"},{"abstractinfo":"作为一种低温液相制备技术,化学镀技术由于具有设备简单、操作方便、成本低等优点而更适合于制备功能梯度镀层(FGD).概述了采用化学镀和复合化学镀方法制备FGD的原理、研究现状及其应用.","authors":[{"authorName":"张旭明","id":"840771a0-4987-4ada-aef9-d962cb0fc16f","originalAuthorName":"张旭明"},{"authorName":"杨贵荣","id":"779bfb3b-0330-45af-820f-3b825d1ea2e1","originalAuthorName":"杨贵荣"},{"authorName":"刘洪峰","id":"181c0e85-ee08-4979-88eb-938d179af927","originalAuthorName":"刘洪峰"},{"authorName":"宋文明","id":"a378e920-c6f1-4598-a1c4-b495c6df9d19","originalAuthorName":"宋文明"},{"authorName":"马颖","id":"1e3f2400-e1f9-4864-b64b-f433a3f1b487","originalAuthorName":"马颖"},{"authorName":"郝远","id":"0c0043bf-ee14-4d08-b8d9-14ce67061856","originalAuthorName":"郝远"}],"doi":"10.3969/j.issn.1005-748X.2008.01.003","fpage":"15","id":"051e8baf-f01b-4cef-809a-0e986180b439","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"ab66cdda-f845-40c4-a7e8-a2e9d1855e5f","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"},{"id":"201d7e4a-c213-4602-9b1a-e98f85da0d4e","keyword":"功能梯度薄膜/镀层","originalKeyword":"功能梯度薄膜/镀层"},{"id":"ae041683-44bc-49c0-be78-8ebbb32dda7f","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"efe55cc7-211a-4ab7-89f8-6e51b8102c55","keyword":"复合化学镀","originalKeyword":"复合化学镀"}],"language":"zh","publisherId":"fsyfh200801003","title":"化学镀技术制备功能梯度镀层的研究现状","volume":"29","year":"2008"},{"abstractinfo":"主要是关于热梯度化学气相过程中预制体致密机理的探讨.通过对沉积试验的结果分析发现:在热梯度化学气相沉积的大部分阶段,预制体沉积致密的动力学方程符合低分子填充孔隙的动力学方程,即指数形式致密方程,这说明热梯度法致密预制体的过程从本质上来说,仍是受制于裂解产物在预制体上孔隙填充的这一动力学过程的,与文献中提到的常规均热法沉积致密模式是一致的.另外,从机理分析和实验结果的对比中发现:热梯度化学气相沉积能够较大幅度提高预制体致密速率的原因是存在于沉积过程的温度梯度和浓度梯度可以较大幅度提高沉积分子的定向扩散速率,所以提高了预制体的致密速率.但这一沉积速率的加快并不改变预制体的致密模式.","authors":[{"authorName":"闫桂沈","id":"c5dadff1-b5e2-458f-baa3-9ef0a88a12a7","originalAuthorName":"闫桂沈"},{"authorName":"李贺军","id":"538213f0-ea90-48a7-920d-384f83b74501","originalAuthorName":"李贺军"},{"authorName":"张守阳","id":"12d1b607-d1fd-4427-bda8-2f1318f3c8c9","originalAuthorName":"张守阳"},{"authorName":"郝志彪","id":"618eebb1-d460-4729-9104-ace22f2d4f90","originalAuthorName":"郝志彪"}],"doi":"10.3321/j.issn:1000-3851.2003.02.012","fpage":"64","id":"87194ba6-2a8b-4464-a3de-cda3e92dd4af","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"af1eccc3-a907-4a37-95fb-0550202a9155","keyword":"碳/碳复合材料","originalKeyword":"碳/碳复合材料"},{"id":"7b042f0a-03be-4558-abf3-2c6656966623","keyword":"热梯度化学气相沉积","originalKeyword":"热梯度化学气相沉积"},{"id":"5624b811-8379-4ec0-9c77-45448d97c711","keyword":"预制体致密动力学","originalKeyword":"预制体致密动力学"},{"id":"b918c5cd-7cf5-4b7b-857c-ed393ea580c6","keyword":"指数致密方程","originalKeyword":"指数致密方程"}],"language":"zh","publisherId":"fhclxb200302012","title":"热梯度化学气相沉积动力学过程的探讨","volume":"20","year":"2003"},{"abstractinfo":"用化学镀法和粉末冶金的方法制备高致密的W/Cu梯度热沉材料.用场发射扫描电镜观察了材料的组织结构、界面和断口形貌.对材料的力学性能也进行了表征,如抗弯强度和显微硬度.结果表明材料每一层都很致密且组织结构均匀.截面上材料成分呈梯度分布,每层之间没有明显的界面.3层W/Cu梯度热沉材料的相对密度可达99.2%.散热层、过渡层和封接层的显微硬度HV分别是2000、2100和2400MPa.抗弯实验结果显示封接层和散热层作为承重抗弯表面时的强度分别是428.5和480.7 MPa.","authors":[{"authorName":"罗来马","id":"88981ad5-e1f8-454b-9645-218cdd901e0f","originalAuthorName":"罗来马"},{"authorName":"谭晓月","id":"2124db9a-c199-4063-9511-8c0b23ba001f","originalAuthorName":"谭晓月"},{"authorName":"丁孝禹","id":"fa693c93-c423-47a1-98c1-af5b76120681","originalAuthorName":"丁孝禹"},{"authorName":"卢泽龙","id":"6de8d6ca-25bc-4cde-8892-7ffc474f4b3a","originalAuthorName":"卢泽龙"},{"authorName":"罗广南","id":"48f234be-817d-4a2b-813b-037d90d7a79a","originalAuthorName":"罗广南"},{"authorName":"昝翔","id":"ef732ec1-15d6-4c05-b7b3-fb814b07fc20","originalAuthorName":"昝翔"},{"authorName":"朱晓勇","id":"0f6d2128-9601-4e60-9bd3-2150ed51fab1","originalAuthorName":"朱晓勇"},{"authorName":"吴玉程","id":"8049c26b-9c51-4b34-9582-fb96e60f90fd","originalAuthorName":"吴玉程"}],"doi":"","fpage":"1983","id":"fba7f1d3-250e-488e-8e8c-d813f8d868fa","issue":"8","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"df8e9af1-0d30-4880-9eef-6a965efef384","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"e1115a2f-c6ef-4a7f-874e-89a0135102b2","keyword":"粉末冶金","originalKeyword":"粉末冶金"},{"id":"f5e8331e-e15d-403c-a639-cf833e02549f","keyword":"W/Cu梯度热沉材料","originalKeyword":"W/Cu梯度热沉材料"}],"language":"zh","publisherId":"xyjsclygc201608012","title":"化学镀和粉末冶金法制备W/Cu梯度热沉材料","volume":"45","year":"2016"},{"abstractinfo":"通过电镀法制备了功能梯度Ni-P合金镀层.SEM形貌照片显示,梯度层截面致密、无明显的宏观界面;400 ℃热处理前后梯度层中P含量分布曲线表明,从界面到镀层表面,P含量逐渐降低,呈现明显的梯度变化.在质量分数分别为10%的盐酸和氢氧化钠介质中的动电位极化曲线和电化学交流阻抗谱分析、含氯酸性介质中的腐蚀前后的表面形貌照片表明,与硬铬镀层相比,经过400 ℃热处理后的梯度Ni-P合金镀层的腐蚀电位提高了600 mV以上,腐蚀电流分别降低了2个和1个数量级,阻抗值亦明显提高,而且,其腐蚀前无裂纹,腐蚀后仅发生轻微的点蚀现象.梯度Ni-P合金镀层较硬铬镀层表现出更优异的耐蚀性能.","authors":[{"authorName":"王立平","id":"803dab36-d040-4242-a574-3f5781d846a6","originalAuthorName":"王立平"},{"authorName":"高燕","id":"05121b2f-3485-4410-90c4-ae282ee0d54e","originalAuthorName":"高燕"},{"authorName":"薛群基","id":"e6b8cd78-b7d4-46e8-911b-06bee82eeb97","originalAuthorName":"薛群基"},{"authorName":"徐洮","id":"9362fda3-8109-4afd-885c-badc54b96fb0","originalAuthorName":"徐洮"}],"doi":"10.3969/j.issn.1004-227X.2006.01.002","fpage":"7","id":"11bdaf4d-0297-4f19-b597-3361215d5b28","issue":"1","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"e52e20a1-4381-4ca5-be5b-f5d561b71631","keyword":"Ni-P合金","originalKeyword":"Ni-P合金"},{"id":"c7e49e7c-6384-4f25-812e-f3288dcd8102","keyword":"梯度","originalKeyword":"梯度"},{"id":"60134408-e8f1-452d-96dc-d5ef3570fd6a","keyword":"代铬镀层","originalKeyword":"代铬镀层"},{"id":"ce27d3b2-9540-4bc8-9162-e6d198846f4a","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"ddyts200601002","title":"功能梯度Ni-P合金镀层在酸性和碱性介质中的电化学腐蚀行为","volume":"25","year":"2006"},{"abstractinfo":"目前,Ni-P化学镀层内应力大,结合强度低,耐磨性差,功能单一,不能满足工业应用要求.为此,采用化学镀技术在45钢表面制备了Ni-P功能梯度镀层,并与3种不同磷含量的均质Ni-P镀层对比,研究了镀层硬度、结合力、耐磨性等特征,分析了成分与结构的梯度变化对Ni-P镀层耐磨性能的影响.结果表明:Ni-P梯度镀层的硬度高于中磷和高磷镀层,略低于低磷镀层,400℃热处理1 h后其硬度达到最大值;镀层与基体结合紧密;在相同条件下试验,Ni-P梯度镀层的耐磨性均优于均质Ni-P镀层,热处理后其耐磨性比均质Ni-P镀层提高1~2倍;与单层Ni-P镀层相比,梯度镀层在整个磨损过程中摩擦系数变化平稳,波动范围较小,镀层内部成分和结构的梯度化进一步提高了镀层与基体的结合力和耐磨性能.","authors":[{"authorName":"王辉","id":"c1a393ef-1646-49f9-9e11-f11648541c1c","originalAuthorName":"王辉"},{"authorName":"杨贵荣","id":"4918a653-5caf-411f-8858-e3a8ce5c4e8e","originalAuthorName":"杨贵荣"},{"authorName":"马颖","id":"1ca2eba5-cd8a-4844-9fa9-886d6fbbb9bb","originalAuthorName":"马颖"},{"authorName":"张巨银","id":"f1f063d4-682f-4514-9213-42daad541d5d","originalAuthorName":"张巨银"},{"authorName":"郝远","id":"ff3924f5-4226-4bae-9ba3-a6b823fa9940","originalAuthorName":"郝远"}],"doi":"","fpage":"1","id":"9e73747b-24ef-46a0-a052-f013a7d38acd","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"364fd9f5-66b3-426b-a454-6c672e47ac4b","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"f3a34220-579b-4f57-8563-07770272646e","keyword":"Ni-P梯度镀层","originalKeyword":"Ni-P梯度镀层"},{"id":"73ceda10-c301-4cf8-abde-079ec623ab1a","keyword":"均质镀层","originalKeyword":"均质镀层"},{"id":"40dd8e3f-c9e7-4e86-a703-60b52b7ba420","keyword":"结合力","originalKeyword":"结合力"},{"id":"621c26ce-4c33-405c-a22e-efddf807ceee","keyword":"热处理","originalKeyword":"热处理"},{"id":"0defa0b0-97b2-41ea-870c-80785b005ba5","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"clbh201003001","title":"Ni-P功能梯度层及均质Ni-P化学镀层的磨损性能","volume":"43","year":"2010"},{"abstractinfo":"在H13钢基体上制备了几种成分的CrNx双层膜和梯度膜.使用X光电子能谱(XPS)分析了膜层的成分,使用X射线衍射仪(XRD)分析膜层的主要相结构;同时检测了膜层的硬度与工艺参数的关系.系统地研究了膜层的动电位极化曲线,梯度膜能够明显降低膜层的腐蚀电流密度.使用扫描电子显微镜(SEM),研究了膜层显微结构和性能之间的关系,并提出了双层膜和梯度膜的结构模型.膜层的主要成分、结构都随着氮气分压而改变.随着氮气分压从0.05 Pa提高到2 Pa,CrNx膜层中的N/Cr原子比从0.08提高到0.67.氮气分压0.05 Pa时,双层膜的成分包括Cr(bcc)和Cr2N(hex),在分压达到2 Pa时,膜层主要成分为CrN(fcc),在梯度膜中有一个CrN(220)择优取向.相对于CrN/Cr/H13双层膜,梯度薄膜的抗腐蚀性能有明显提高.在双层膜上有较多较深的微孔,而在梯度膜表面比较鲜见.","authors":[{"authorName":"周庆刚","id":"ae017cec-cd96-4985-b009-86cd624abeb0","originalAuthorName":"周庆刚"},{"authorName":"白新德","id":"ac1d18f4-6b55-44a7-9233-d40b4a31dabe","originalAuthorName":"白新德"},{"authorName":"陈小文","id":"7306e0a8-c8c3-4a58-bd31-0ddd40163193","originalAuthorName":"陈小文"},{"authorName":"凌云汉","id":"ed8a4beb-0ddd-4336-9b90-0b5b746c3499","originalAuthorName":"凌云汉"},{"authorName":"彭德全","id":"353849e7-372a-4fa0-9c29-e37b3a0aea58","originalAuthorName":"彭德全"}],"doi":"","fpage":"666","id":"692343e2-4f85-4080-bd24-6491b07858f1","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"68dbf550-8fe8-40aa-937c-7a33ff23c925","keyword":"梯度薄膜","originalKeyword":"梯度薄膜"},{"id":"1f3690a6-f836-48fa-8d47-04c3b0d6f31a","keyword":"氮化铬","originalKeyword":"氮化铬"},{"id":"e957461a-24cd-465a-8c78-6c010fb55b16","keyword":"电化学性能","originalKeyword":"电化学性能"},{"id":"0807c82a-0b90-4fe1-97e0-f91f80f09bfc","keyword":"H13钢","originalKeyword":"H13钢"}],"language":"zh","publisherId":"xyjsclygc200406026","title":"氮化铬梯度膜的制备和电化学性能研究","volume":"33","year":"2004"}],"totalpage":3327,"totalrecord":33265}