针对产品的性能要求制定合理的热轧工艺,提出将组织性能预测与控制技术应用于热轧工艺的优化设计.基于大量生产数据,建立了包含10个BP神经网络的模型组以描述化学成分、工艺和力学性能的对应关系,屈服强度、抗拉强度和伸长率的预测精度分别达到了±6%、±6%和±4%.结合多目标粒子群优化算法,针对客户对性能的需求,在化学成分和工艺约束已知的条件下,对热轧工艺进行了优化计算.工艺优化计算结果与现场生产数据吻合良好,验证了工艺优化设计的有效性,从而为热轧最优工艺设计提供指导.
参考文献
[1] | Liu Z;Wang G;Gao W .Prediction of the Mechanical Properties of Hot-Rolled C-Mn Steels Using Artificial Neural Networks[J].Journal of Materials Processing Technology,1996,57(3-4):332. |
[2] | 干勇,刘正东,王国栋,吴迪,王巍,张丕军.组织性能预报系统在宝钢2050热轧生产线的在线应用[J].钢铁,2006(03):39-43. |
[3] | 谭文,刘振宇,吴迪,王国栋,王春梅.热轧中厚板冲击功的神经网络预报模型[J].钢铁,2007(02):51-55. |
[4] | 许云波,刘相华,王国栋,谢瑞萍,金永春.热轧中厚板组织-性能预测及软件开发[J].钢铁,2006(03):51-54. |
[5] | Ray PK.;Ganguly RI.;Panda AK. .Optimization of mechanical properties of an HSLA-100 steel through control of heat treatment variables[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):122-131. |
[6] | Saito Y .Modeling of Microstructural Evolution in Thermomechanical Processing of Structural Steels[J].Material Science and Engineering,1997,A223(1-2):134. |
[7] | J.C.Malas III;W.G.Frazier .Optimization of Microstructure Development during Hot Working Using Control Theory[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1997(9):1921-1930. |
[8] | Mahfouf M;Chen M Y;Linkens D A .Adaptive Weighted Particle Swarm Optimization for Multi-Objective Optimal Design of Alloy Steels[J].Lecture Notes in Comput Sci,2004,3242:762. |
[9] | Deb K;Agrawal S;Pratap A et al.A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization:NSGA-Ⅱ[J].Lecture Notes in Comput Sci,2000,1917:1. |
[10] | Li X .A Non-dominated Sorting Particle Swarm Optimizer for Muhiobjective Optimization[J].Lecture Notes in Comput Sci,2003,2723:37. |
[11] | Deb K;Goel T .Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence[J].Lecture Notes in Comput Sci,2001,1993:67. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%