结合当前国内外关于固体氧化物燃料电池电解质10Sc1CeSZ合成技术的研究现状,提出了一种新颖的合成方法,即固液复合法(SLM),这种方法具有低成本和环境友好的特点,表现出良好的应用潜力.主要考察了氧化锆比表面积对粉体晶体结构的影响,并探讨了该方法的主要合成机理.结果表明,氧化锆比表面积大于60m2/g时可以获得纯的立方相粉体.与传统的共沉淀合成法相比,SLM法合成的粉体具有更好的微结构和烧结性能、电解质性能.烧结后的电解质片的电导率在10Sc1CeSZ电解质中处于较高水平,在800℃时达到了0.14S/cm.
参考文献
[1] | Cropper M A J;Geiger S;Jollie D M .Fuel cells:A survey of current developments[J].Journal of Power Sources,2004,131(1-2):57. |
[2] | Anna Lashtabeg;Stephen J.Skinner .Solid oxide fuel cells-a challenge for materials chemists?[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2006(31):3161-3170. |
[3] | Minh N .Solid oxide fuel cell technology-Features and applications[J].Solid State Ionics,2004,174(1-4):271. |
[4] | Jeffrey W. Fergus .Electrolytes for solid oxide fuel cells[J].Journal of Power Sources,2006(1):30-40. |
[5] | Lee D S et al.Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of interme-diate temperature SOFCs[J].Solid State Ionics,2005,176(1-2):33. |
[6] | Man Liu;Changrong He;Jianxin Wang;Wei Guo Wang;Zhenwei Wang .Investigation of (CeO_2)_x(Sc_2O_3)_(0.11-x)(ZrO_2)_(0.89) (x = 0.01-0.10) electrolyte materials for intermediate-temperature solid oxide fuel cell[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2010(2):319-323. |
[7] | Wang Z et al.Structure and impedance of ZrO2 doped with Sc2O3 and CeO2[J].Materials Letters,2005,59(19-20):2579. |
[8] | Mechanical properties of 10 mol% Sc_2O_3-1 mol% CeO_2-89 mol% ZrO_2 ceramics[J].Journal of Power Sources,2010(9):2774. |
[9] | De Carvalho, E.;Preis, W.;Sitte, W.;Irvine, J.T.S. .Investigation of conductivity of (Ce_xY_(0.2 - X))Sc _(0.6)Zr_(3.2)O_(8 - δ) (0 < x < 0.2) system and its dependence upon oxygen partial pressure[J].Solid state ionics,2010(29/30):1344-1348. |
[10] | Kimpton J.;Randle TH.;Drennan J. .Investigation of electrical conductivity as a function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92 (M=Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc)[J].Solid state ionics,2002(1/2):89-98. |
[11] | Singandhally ThippaReddy Aruna;Narayanaswamy Balaji;Badi Shri Prdkash .Low temperature assisted chemical coprecipitation synthesis of 8YSZ plasma sprayable powder for solid oxide fuel cells[J].International journal of hydrogen energy,2011(22):14963-14970. |
[12] | Yawen Zhang;Yu Yang;Shujian Tian;Chunsheng Liao;Chunhua Yan .Sol-gel synthesis and electrical properties of (ZrO_2)_0.85(REO_1.5)_0.15 (RE = Sc,Y) solid solutions[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2002(2):219-224. |
[13] | Akihiko Yamaji;Takao Koshikawa;Wakako Araki;Tadaharu Adachi .Stabilization of a Zirconia System and Evaluation of Its Electrolyte Characteristics for a Fuel Cell:Based on Electrical and Mechanical Considerations[J].Journal of engineering materials and technology,2009(1):011010-6. |
[14] | Shiqiang (Rob) Hui;Justin Roller;Sing Yick;Xinge Zhang;Cyrille Deces-Petit;Yongsong Xie;Radenka Maric;Dave Ghosh .A brief review of the ionic conductivity enhancement for selected oxide electrolytes[J].Journal of Power Sources,2007(2):493-502. |
[15] | Mogensen M et al.Factors controlling the oxide ion con ductivity of fluorite and perovskite structured oxides[J].Solid State Ionics,2004,174(1-4):279. |
[16] | Keegan C. Wincewicz;Joyce S. Cooper .Taxonomies of SOFC material and manufacturing alternatives[J].Journal of Power Sources,2005(2):280-296. |
[17] | J. Garcia-Barriocanal;A. Rivera-Calzada;M. Varela;Z. Sefrioui;E. Iborra;C. Leon;S. J. Pennycook;J. Santamaria .Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO_2:Y_2O_3/SrTiO_3 Heterostructures[J].Science,2008(5889):676-680. |
[18] | 金明善,张宝华,刘克增,于强强,索掌怀.Zr(OH)4的热分解及ZrO2的相变过程[J].化学研究,2008(03):27-31. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%