{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":2,"startPagecode":1},"records":[{"abstractinfo":"在32~34K温度和0.5T初始磁场中,MgB2超导块材的磁弛豫性质通过剩余磁化强度M随时间t的变化进行了研究.在初始阶段,M~lnt明显偏离线性,磁通运动接近Zeldov对数模型.足够长的时间后,M~lnt呈现很好的线性,磁通运动符合Anderson-Kim模型.","authors":[{"authorName":"李光临","id":"cc949c57-759e-4aaa-912c-a389d5d76820","originalAuthorName":"李光临"},{"authorName":"宋炜","id":"08638d15-77be-4a5e-8357-a1c62756b10a","originalAuthorName":"宋炜"},{"authorName":"孟立飞","id":"2e3433aa-6648-471b-8fba-6a062fb09b5f","originalAuthorName":"孟立飞"},{"authorName":"冯庆荣","id":"29bac277-3950-4d62-a5b4-208dffcbb268","originalAuthorName":"冯庆荣"},{"authorName":"高政祥","id":"235f03ff-5a69-4d65-a895-11bfc98b2b4b","originalAuthorName":"高政祥"},{"authorName":"张西祥","id":"f75ef15d-b5f5-4c3f-ab36-b8393eddc9f0","originalAuthorName":"张西祥"},{"authorName":"温戈辉","id":"35e41666-6302-46f2-be60-87d624964922","originalAuthorName":"温戈辉"},{"authorName":"郑荣坤","id":"77ecad5c-faf3-4029-adcd-d081292a5996","originalAuthorName":"郑荣坤"}],"doi":"10.3969/j.issn.1000-3258.2001.04.014","fpage":"309","id":"70cb8aac-6b48-4805-bb9c-243dec5ee8d7","issue":"4","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"05660187-c718-4eb8-ab52-ed851da99be8","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"dwwlxb200104014","title":"MgB2超导块材的非线性磁弛豫性质的研究","volume":"23","year":"2001"},{"abstractinfo":"矢量磁位是电磁涡流场常用的分析方法.本文利用矢量电位法建立了NdFeB永磁铁和超导体相互作用的电磁场数学方程.对在求解过程中采用Kim模型,通过伽辽金有限元离散,形成线性方程组,解出超导体电流密度分布.这些分析结果为改进超导悬浮系统提供了理论依据.","authors":[{"authorName":"郭仁春","id":"43e85a62-6808-45a3-8b1e-3a595cb9c098","originalAuthorName":"郭仁春"},{"authorName":"王金星","id":"c905c3f1-968e-4ac5-ad3e-36c5b9e88d84","originalAuthorName":"王金星"}],"doi":"10.3969/j.issn.1000-3258.2008.01.012","fpage":"58","id":"7ed5e40d-938c-4b12-a239-3c2acdda598a","issue":"1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"0a7bff5f-a1f9-4193-8d35-c84e8a901fe1","keyword":"YBCO超导体","originalKeyword":"YBCO超导体"},{"id":"4728654d-a853-437b-be2e-cd5b6b0769ed","keyword":"永磁铁","originalKeyword":"永磁铁"},{"id":"563e90cb-5aa9-4a13-9406-a26d360e2beb","keyword":"矢量磁位","originalKeyword":"矢量磁位"},{"id":"3252ad9b-afeb-4a7b-8cd4-6a146c270d41","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"dwwlxb200801012","title":"矢量磁位法求解轴对称超导悬浮系统的电流分布","volume":"30","year":"2008"},{"abstractinfo":"由熔融织构YBCO块材表面剩余磁感应强度的磁光图像,推算出局域有效激活能U和电流密度j,进而研究磁通运动的局域效应.在样品的边缘区域,U(j)符合Zeldov对数模型,在样品中心区域,U(j)应该符合Anderson-Kim线性模型.在涡旋线向样品中心运动的前沿区域,可以观察到电流密度随时间先升后降.","authors":[{"authorName":"罗康","id":"c211598c-9728-42d4-b414-635952dab1e9","originalAuthorName":"罗康"},{"authorName":"刘蕴宏","id":"b66bc2d4-8c97-4785-b13e-75c501300304","originalAuthorName":"刘蕴宏"},{"authorName":"谢旭","id":"b76949e9-2d0f-476c-a212-3165654d2e71","originalAuthorName":"谢旭"},{"authorName":"罗志全","id":"2867b3bb-ba73-412f-9192-4718bcf005d7","originalAuthorName":"罗志全"},{"authorName":"高政祥","id":"71f3d5e3-f30a-4ff8-8a68-479be38b9ce2","originalAuthorName":"高政祥"},{"authorName":"肖玲","id":"52108a23-d592-4619-9249-3831899f4416","originalAuthorName":"肖玲"},{"authorName":"任洪涛","id":"6e664f49-4abd-4f78-b078-d7fb125f9f8c","originalAuthorName":"任洪涛"},{"authorName":"焦玉磊","id":"7ba5fc02-0af8-4163-8fd5-27894b3e75c7","originalAuthorName":"焦玉磊"},{"authorName":"郑明辉","id":"c6929294-1e39-4ab5-81c5-e64322d89252","originalAuthorName":"郑明辉"}],"doi":"10.3969/j.issn.1000-3258.2000.05.004","fpage":"353","id":"91a42b73-875a-4c1c-8ad4-1ab9b5668579","issue":"5","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"1ed47f4f-ed04-403c-bb5c-f5f2ba48a11e","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"dwwlxb200005004","title":"熔融织构YBCO块材磁通动力学参量的磁光图像研究(Ⅱ)","volume":"22","year":"2000"},{"abstractinfo":"Motivation for this Letter comes from two experiments. The first, by Kim and Chan (Phys. Rev. Lett. 53, 170 (1984)), measured a two-dimensional (2D) liquid-vapour critical point exponent. The second studied, via the magnetism of ultrathin metal films, the crossover of the critical exponent beta from 2D to 3D. Here, the analogy between magnetic behaviour near criticality and the corresponding liquid-vapour behaviour is first used to discuss the 2D-3D crossover in the latter case. Finally, the experimentally observed magnetic behaviour near criticality is considered for the ferromagnet CrBr(3) to allow fingerprints of the 3D Ising Hamiltonian to be anticipated.","authors":[],"categoryName":"|","doi":"","fpage":"693","id":"6abbfabb-ee22-4b3b-8e9e-2e9932f7c27f","issue":"6","journal":{"abbrevTitle":"PACOL","id":"1dd83433-a30f-4ee5-aa8c-583e8a874e8c","issnPpub":"0031-9104","publisherId":"PACOL","title":"Physics and Chemistry of Liquids"},"keywords":[{"id":"c481d76c-3435-4665-bc5f-2aadede710db","keyword":"critical-point effects;critical exponents;crossover;Ising model;criticality;magnetic equation of state;critical exponents;ising-model;equation;crbr3;state","originalKeyword":"critical-point effects;critical exponents;crossover;Ising model;criticality;magnetic equation of state;critical exponents;ising-model;equation;crbr3;state"}],"language":"en","publisherId":"0031-9104_2009_6_1","title":"Liquid-vapour critical point behaviour: especially crossover from two to three dimensions via a magnetic analogy","volume":"47","year":"2009"},{"abstractinfo":"用热重分析(TGA)法研究了乙烯基笼型倍半硅氧烷(V-POSS)/聚丙烯纳米复合材料的热降解动力学.采用Kim-Park,Flynn-Wall-Ozswa和Friedman三种方法计算了共混物的降解反应活化能,结果说明,当V-POSS加入质量分数分别为4%、8%、12%和16%、升温速率为5℃/min时材料热降解起始温度分别提高了27.1℃、29.3℃、52.6℃和66.9℃,热降解反应活化能Ea提高了10 kJ/mol~50kJ/mol,反应级数n也随V-POSS加入量增多有所提高,材料热稳定性得到了改善.","authors":[{"authorName":"曹新鑫","id":"5cd71928-1210-4453-b521-805c04f2ab30","originalAuthorName":"曹新鑫"},{"authorName":"高俊刚","id":"476e5f9e-2ff7-411e-b769-6a2d5995d455","originalAuthorName":"高俊刚"},{"authorName":"杜永刚","id":"9d6ffa27-3aed-46e9-8ca3-7b8bb0fffa7c","originalAuthorName":"杜永刚"}],"doi":"","fpage":"106","id":"d5f76dd0-e6eb-4998-b67a-07481b7f9ca9","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"b76b8a9f-154e-446d-94fe-2c15d7fde518","keyword":"笼型聚倍半硅氧烷","originalKeyword":"笼型聚倍半硅氧烷"},{"id":"24047067-251b-41e8-a778-a021d978fdcc","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"6275f45c-11a9-41fd-8933-4790541b2af4","keyword":"热重分析","originalKeyword":"热重分析"},{"id":"333996be-be39-4c03-8f06-4c1416a5c6f0","keyword":"降解动力学","originalKeyword":"降解动力学"}],"language":"zh","publisherId":"gfzclkxygc201106029","title":"乙烯基笼型倍半硅氧烷/聚丙烯纳米复合材料热降解动力学","volume":"27","year":"2011"},{"abstractinfo":"通过使用扩展后的Mikheenko等人提出的临界态模型,我们用数值计算方法找出了圆盘状超导薄膜在垂直外磁场中的磁通密度分布和电流密度分布.其中考虑到临界电流密度Jc会随外磁场Ha改变而变化,所以我们采用了Kim型表达式Jc(H)=J0/(1+(|H|/H0)n).计算出的初始磁化曲线和磁滞回线与YBCO薄膜的实验曲线(T=51~77K)符合得很好,说明这个方法在这段温区内比较成功.另外我们也得出并讨论了特征参数J0,H0随温度的变化关系.","authors":[{"authorName":"李志敏","id":"6ee32fbb-ff60-4d54-9758-3b0821e68ca1","originalAuthorName":"李志敏"},{"authorName":"","id":"4717cd38-aef4-4e9c-b633-38f2c98762d5","originalAuthorName":""},{"authorName":"覃孟军","id":"a91d0a7d-74bb-4524-81ae-a16965eca22f","originalAuthorName":"覃孟军"},{"authorName":"姚希贤","id":"ff81ebc0-00e5-45d9-bb23-08cda389cc9a","originalAuthorName":"姚希贤"}],"doi":"10.3969/j.issn.1000-3258.1999.06.001","fpage":"401","id":"e80d9fe9-0ccb-441b-93a2-7a493866909e","issue":"6","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"910bd83d-769f-419f-8b15-f67d188e686e","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"dwwlxb199906001","title":"垂直磁场中YBCO薄膜的磁通密度和电流密度分布","volume":"21","year":"1999"},{"abstractinfo":"根据弹性均匀化理论,并结合有限元方法推导出适用于二维周期结构的均匀化有限元格式,计算出不同相对密度下的正方形孔洞材料的等效弹性参数,以及等效弹性参数与胞元绕坐标系旋转角度的函数关系,考察了胞壁固体相的力学性能参数对宏观力学性能的影响.并将数值计算结果与已有的理论公式进行了比较和分析.结果表明,正方形孔洞材料是各向异性的,其等效弹性参数主要由结构的相对密度来确定,对基体材料的泊松比的变化并不敏感.在相对密度较小的情况下,Gibson公式和Kim公式与均匀化有限元结果吻合较好;当结构相对密度较大时,理论公式结果必须被有限元结果所修正.","authors":[{"authorName":"王志华","id":"e750e764-2586-40e9-9df0-496565acd647","originalAuthorName":"王志华"},{"authorName":"曹晓卿","id":"4490eb10-05ff-4c38-a0be-c1146ed3b8a8","originalAuthorName":"曹晓卿"},{"authorName":"马宏伟","id":"ddfc74cf-fbff-4b13-99a0-1b6c1b26904b","originalAuthorName":"马宏伟"},{"authorName":"赵隆茂","id":"e1216dba-5989-402d-b9ea-bf33f2a22225","originalAuthorName":"赵隆茂"},{"authorName":"杨桂通","id":"959f66d2-d37d-4ea6-a245-61af7f7f428a","originalAuthorName":"杨桂通"}],"doi":"10.3969/j.issn.1004-244X.2006.05.002","fpage":"4","id":"09f95d4a-f3b2-4ab6-884f-71439de23d1f","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"bd440d1e-9221-4af7-ad11-b70b3d748802","keyword":"多孔材料","originalKeyword":"多孔材料"},{"id":"e18fc4fa-5c3a-4105-93c4-d20a8242f632","keyword":"均匀化","originalKeyword":"均匀化"},{"id":"0f590099-5635-4476-814d-cff83d994a25","keyword":"有限元","originalKeyword":"有限元"},{"id":"edcbdc4a-3c3d-4d67-9def-1ff714ab7ef8","keyword":"等效弹性参数","originalKeyword":"等效弹性参数"},{"id":"8cf259cf-5f39-4187-80c8-13f82adf62b2","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"bqclkxygc200605002","title":"基于均匀化理论的多孔材料细观力学特性数值研究","volume":"29","year":"2006"},{"abstractinfo":"采用最大气泡压力法测定298.15 K,常压及不同离子强度(0.57~12.81 mol/kg)条件下氯化钴水溶液体系的表面张力,建立表面张力与浓度关系的经验公式.应用Gibbs吸附等温式推导出表面张力与活度的关系式,提出一种计算溶液活度因子的新模型,并利用实验数据回归得出了新模型参数.与文献中的数据相比,新模型计算数据的标准偏差为0.0632,与Kim归纳出的Pitzer模型参数计算数据的标准偏差相近.结果表明:采用电解质溶液活度测定新方法和计算模型可得到的氯化钴水溶液活度因子的精度较高,这使得通过测定电解质溶液表面张力计算其活度因子(或活度)成为可能.","authors":[{"authorName":"陈辉煌","id":"b69a422b-9572-4ba3-b11e-9cdcc7ff5d26","originalAuthorName":"陈辉煌"},{"authorName":"陈启元","id":"5bf3e7ec-70b0-46d3-b455-6dd5cbf6352e","originalAuthorName":"陈启元"},{"authorName":"刘常青","id":"ed56a0f0-1b2c-4a46-8d0c-f648f165bbcb","originalAuthorName":"刘常青"},{"authorName":"张平民","id":"7d5973a3-2002-4bc7-8fb9-272116113323","originalAuthorName":"张平民"},{"authorName":"胡久刚","id":"c0a66c69-c273-4037-8606-4052a539bad7","originalAuthorName":"胡久刚"}],"doi":"","fpage":"1878","id":"4dd727f7-9218-477f-b3e4-eb212f315d0e","issue":"7","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"882fa2c5-a48c-4d99-96db-6213407e1d0d","keyword":"电解质溶液","originalKeyword":"电解质溶液"},{"id":"76d23104-1035-4287-94f6-64bab50e07e7","keyword":"活度因子","originalKeyword":"活度因子"},{"id":"a034b41b-408a-48e2-9338-c618345fcf93","keyword":"表面张力","originalKeyword":"表面张力"},{"id":"2ff62a00-0fd3-476c-9fb9-7418cf0ec4f4","keyword":"最大气泡压力法","originalKeyword":"最大气泡压力法"},{"id":"744da944-cfa5-421b-94f3-4c2bc21678cf","keyword":"氯化钴","originalKeyword":"氯化钴"},{"id":"9469b2e5-2735-4a7a-9d7a-108eb1aca6a7","keyword":"吉布斯吸附等温式","originalKeyword":"吉布斯吸附等温式"}],"language":"zh","publisherId":"zgysjsxb201407027","title":"吉布斯吸附等温式的应用—电解质溶液活度测定新方法","volume":"24","year":"2014"},{"abstractinfo":"高温超导体的发现动摇了支配磁通动力学二十几年的Kim-Anderson模型.于是人们提出了新的涡旋玻璃态模型,集体钉扎模型和U~j对数关系模型来描述高温超导体的磁通动力学.其中,涡旋玻璃态模型已被人们广泛接受.Fe基超导体发现后,人们它行为十分类似于高温超导体.我们实验上仔细研究了FeSe0.5Te0.5单晶的V~I关系曲线,发现上述诸模型均不能很好的解释我们的实验结果,而张的反跳模型恰能很好的拟合实验结果.本文讨论了诸模型对高温超导体磁通动力学描述的适用性并给出合理的解释.","authors":[{"authorName":"左鸣","id":"03c477d3-9052-46e4-847f-63d02181eb07","originalAuthorName":"左鸣"},{"authorName":"谭舜","id":"e6c76445-1560-461e-8a9b-cfb4ebaf2ab6","originalAuthorName":"谭舜"},{"authorName":"于一","id":"1a74a77b-2ab7-4b47-9cf1-b7c39dc09311","originalAuthorName":"于一"},{"authorName":"张志涛","id":"041450c9-b81e-470a-bcfc-1343b1885cd2","originalAuthorName":"张志涛"},{"authorName":"皮雳","id":"70c4a7ba-5904-4bed-9761-506468de7680","originalAuthorName":"皮雳"},{"authorName":"张庶元","id":"106c9a4a-4eb4-4c2a-8745-51bbcb06dc9a","originalAuthorName":"张庶元"}],"doi":"","fpage":"161","id":"898e6d1a-0de7-4752-b7bc-836cb1a35d1e","issue":"3","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"748a5126-74fe-4461-845e-58a839046ca2","keyword":"高温超导体","originalKeyword":"高温超导体"},{"id":"f3d89bed-4790-4b91-b580-01033472bb3f","keyword":"磁通蠕动","originalKeyword":"磁通蠕动"},{"id":"578b73b7-658c-4ff5-a44c-ae3d36a87837","keyword":"涡旋钉扎","originalKeyword":"涡旋钉扎"}],"language":"zh","publisherId":"dwwlxb201203001","title":"从FeSe_(0.5)Te_(0.5)的V~I曲线论磁通动力学的诸模型","volume":"34","year":"2012"},{"abstractinfo":"通过引入与Batra及Kim类似的观点,将绝热剪切带宽度定义为绝热剪切带的中心区域的宽度(W5%),在该区域上温度比其峰值小5%,利用Johnson-cook模型及梯度塑性理论分析Ti-6A1-4V绝热剪切带的厚度随环境温度的演变规律.计算表明,随着环境温度的升高,绝热剪切带宽度增加,这与许多实验观测结果一致.当绝热剪切带的总厚度在上限时,绝热剪切带宽度-环境温度曲线是稍微上凹的;但是,当绝热剪切带的总厚度在下限时,绝热剪切带宽度-环境温度曲线基本上是直线,著名的Dodd及Bai模型无法预测这些新现象.关于绝热剪切带宽度的计算结果非常接近于Liao及Duffy的实测结果.在忽略应变硬化的条件下,采用线性软化模型及梯度塑性理论推导w5%的简化解析式,发现环境温度、密度、热容、软化模量、剪切应力的增加使绝热剪切的敏感性降低,而功热转化因子及抗剪强度的降低使绝热剪切的敏感性降低.","authors":[{"authorName":"王学滨","id":"b371250d-a93a-4415-bb1a-72a5de727684","originalAuthorName":"王学滨"}],"doi":"","fpage":"788","id":"3fd4e971-8080-400b-a592-f1b141f8735f","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"2f7e5801-4ace-48c8-8334-520b0372cb69","keyword":"Ti-6Al-4V","originalKeyword":"Ti-6Al-4V"},{"id":"1b97f3f0-c260-4e70-99c1-71527ab9172f","keyword":"绝热剪切带","originalKeyword":"绝热剪切带"},{"id":"500ee810-6e1d-47e2-a431-00ac29f8732b","keyword":"宽度","originalKeyword":"宽度"},{"id":"39e1df67-2797-48b9-8c0e-786e2e18e14c","keyword":"环境温度","originalKeyword":"环境温度"},{"id":"867f95be-d35a-45dc-b71e-e0d751617137","keyword":"梯度塑性理论","originalKeyword":"梯度塑性理论"},{"id":"7abbd768-e41b-4e0a-ac8b-879cd4ac243a","keyword":"Johnson-Cook模型","originalKeyword":"Johnson-Cook模型"},{"id":"298f93ff-0f67-4672-88d9-19da5c70d01b","keyword":"绝热剪切敏感性","originalKeyword":"绝热剪切敏感性"}],"language":"zh","publisherId":"xyjsclygc201105009","title":"钛合金绝热剪切的敏感性分析及环境温度的影响","volume":"40","year":"2011"}],"totalpage":2,"totalrecord":13}