欢迎登录材料期刊网

材料期刊网

高级检索

通过碱液清洗粉末净化B4C颗粒,以改善其在Mg—Li基体中的分散特性。结果表明:经过预处理后粉末中超细颗粒明显减少,B2O3含量减少,B4C粉末颗粒表面更加洁净。采用经碱洗处理后的B4C粉末制备出的高锂低熔点预混合金拉伸强度与密度均有提高。最后按Mg-15Li-2A1—6B4C成分配比制备的B4C/Mg—Li复合材料金相组织中B4C粉末聚团明显减少,组织更加均匀,与用未处理B4C粉末制备的134C/Mg—Li复合材料相比,其拉伸强度提高21.53%。对B4c粉末的碱洗预处理有效地提高了原位生成硼化物对B4C/Mg—Li复合材料的强化效果。

Alkaline solution treatment was used to purify B4C powder and enhance the wetting ability between the B4 C powder and the Mg - Li matrix. The results show that both of the specific surface and B2O3 decrease. Tensile strength and density of the pre-mixed alloy prepared by the B4C powder after alkaline treatment increase. Fewer agglomerates and uniform formation are proved in the metallographic structure of the B4 C/Mg- Li composite (Mg- 15Li- 2A1- 6B4 C). The tensile strength of B4C/Mg- Li composite increases 21.53% compared with that prepared by B4 C without alkaline solution treatment. Results indicate that the alkaline solution treatment of B4 C powder can improve the strengthening effect of the boride in situ reacted in the B4C/Mg- Li composite.

参考文献

[1] Sambasiva R G. Effect of texture and grain size on the fracture behaviour of hot rolled Mg, Mg-12.5%Li and Mg-5%Ti alloys [J]. Res Mechanica: International Journal of Structural Mechanics and Materials Science, 1983, 9(1): 41-61.
[2] Song G S, Kral M V. Characterization of cast Mg-Li-Ca alloys [J]. Materials Characterization, 2005, 54: 279-286.
[3] 李红斌, 姚广春, 吉海滨, 等. 超轻Mg-Li-Zn 系变形镁合金冷轧及热处理后的观微组织和性能 [J]. 过程工程学报, 2005, 10(5): 563-567.
[4] Jackson J H. Mechanical property of extruding Mg-Li-Al alloy [J]. Metals Trans, 1949, 185: 149-168.
[5] Busk R S, Leman D L, Casey J J. On the possible use of titanium and its alloys and compounds as active materials in batteries [J]. Trans AIME, 1950, 198(10): 945-951.
[6] 沙桂英, 孙晓光, 刘 腾, 等. Mg-3.04Li-0.77Sc 合金的高应变率变形局部化行为 [J]. 材料研究学报, 2010, 24(6): 567-571.
[7] Swann R T, Esterling D M. Chemical feasibility of lithium as a matrix for structural composites [J]. Composites, 1984, 15(2): 305-309.
[8] Whalen R T, Gonzalez-Doncel G, Robinson S L, et al. Mechanical properties of particulate composites based on a body-centered cubic Mg-Li alloy containing boron [J]. Scripta Metallurgica, 1989, 23(1): 137-140.
[9] 乐启炽, 崔建忠, 李红斌, 等. Mg-Li合金研究最新进展及其应用 [J]. 材料导报, 2003, 12(12): 1-4.
[10] 郝元恺, 姜冀湘, 赵 恂. 碳化硼颗粒/镁合金复合材料的工艺与性能 [J]. 复合材料学报, 1995, 12(4): 8-11.
[11] Pekguleryuz M O. Magnesium composite—A critical review / /Proceedings of the First Canadian International Conference on Composites and Exhibition. Ottawa: National Research Council of Canada, 1991: 278-288.
[12] 闫立奇. 原位生成硼化合物强化镁锂基复合材料的研究 . 湖南长沙: 中南大学, 2006.
[13] 周 萍. 刘志坚. Mg-Li基复合材料铸锭中的孔隙控制工艺 [J]. 粉末冶金材料科学与工程, 2007, 12(1): 44-48.
[14] 杨晓亮, 刘志坚. 真空脱气处理对微细碳化硼粉末特性的影响 [J]. 中南大学学报, 2010, 41(6): 2127-2131.
[15] 蒋海云, 王继刚, 吴申庆. B4C改性酚醛树脂粘接 SiC陶瓷的高温性能 [J]. 复合材料学报, 2009, 25(1): 7-12.
[16] 蔺雷亭, 王振国. 碳化硼超细微粉团聚及解决方法 [J]. 中国粉体技术, 2007(1): 46-47.
[17] 关 明, 樊建锋. Al72Ni12Co16/A365 准晶颗粒增强铝基复合材料的制备及其力学性能 [J]. 复合材料学报, 2010, 27(1): 51-56.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%