欢迎登录材料期刊网

材料期刊网

高级检索

研究了一种镍基高温合金在不同温度下的低周疲劳性能,分析了疲劳断口。结果表明,该合金循环应力响应行为表现出对温度和外加总应变幅很强的依赖关系,不同的循环应力响应行为可归因于位错、强化相和合金元素间复杂的交互作用。合金疲劳寿命与温度、外加总应变幅、氧化损伤程度有关。疲劳断裂行为受外加应变幅和氧化影响很大。

Cyclic deformation response and low cycle fatigue behavior a nickel-base superalloy at different temperatures were investigated. The results show that the alloy exhibits cyclic hardening, softening or stability, which depends on the testing temperature and total strain amplitude. The cyclic stress response behavior carl be rationalized based on the mechanisms associated with interactions between dislocations, strengthening phases and solute atoms. The fatigue life is closely relative to the temperature, the total strain amplitude, the degree of oxidation damage. The external strain amplitude and oxidation have a great influence on the fatigue fracture behavior.

参考文献

[1] Reuchet J;Remy L .High temperature low cycle fatigue of MAR-M 509 superalloy I:The influence of temperature on the low cycle fatigue behaviour from 20 to 1100 ℃[J].Materials Science and Engineering A,1983,58(01):19-32.
[2] Stephen D A;Liu S;B aur R .Low cycle fatigue behavior of Ren680 at elevated temperature[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1981,12(03):473-481.
[3] Valsan M;Sastry D H;Rao Bhanu S R .Effect of strain rate on the high-temperature low-cycle fatigue properties of a nimonie PE-16 superalloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1994,25(01):159-171.
[4] Li S X;Smith D J .High temperature fatigue-creep behaviour of single crystal SRR99 nickel base superalloys:part II-fatigue-creep life behaviour[J].Fatigue & Fracture of Engineering Materials & Structures,1995,18(05):631-643.
[5] Guo J T;Ranucci D;Picco E et al.Effect of environment on the low cycle fatigue behavior of cast nickelbase superalloy IN738LC[J].International Journal of Fatigue,1984,6(02):95-99.
[6] Matuszyk W;Camus G;Duquette D J .Effects of temperature and environment on the tensile and fatigue crack growth of a Ni3A1 base alloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1990,21(11):2967-2975.
[7] 陈立佳;王中光;姚戈 .铸造Ni基高温合金K417的高温低周疲劳行[J].金属学报,1999,35(11):1144-1150.
[8] L. J. Chen;Z. G. Wang;G. Yao;J. F. Tian .The influence of temperature on low cycle fatigue behavior of nickel base superalloy GH4049[J].International Journal of Fatigue,1999(8):791-797.
[9] 廖鄂斌;郭建亭;王淑荷 .定向凝固合金DZl7G的高温低周疲劳性能研究[J].金属学报,1998,34(03):278-282.
[10] Ye D Y;Ping D H;WANG Z L et al.Low cycle fatigue behavior of nickel-based superalloy GH41d5/SQ at elevated temperature[J].Materials Science and Engineering A,2004,373(12):54-64.
[11] 石德珂.位错与材料强度[M].西安:西安交通大学出版社,1988
[12] 赵敬世.位错理论基础[M].北京:国防工业出版社,1989
[13] 何晋瑞.金属高温疲劳[M].北京:科学出版社,1988
[14] Reuchet J;Remy L .High temperature low cycle fatigue of MAR-M 509 superalloy[J].Materials Science and Engineering A,1983,58(01):19-32.
[15] 李云,尚海波,郭建亭,袁超,杨洪才.铸造镍基高温合金K35的高温氧化行为[J].金属学报,2003(07):749-754.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%