玻璃钢/复合材料, 2016, (10): 56-59.
公路埋地玻璃钢夹砂管车辆载荷下挠曲变形特性
张济源 1, , 魏连雨 2, , 张国盘 3, , 陈兆南 <{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用准二维共振三波作为湍流边界层近壁区相干结构初值,用直接数值模拟方法计算了流动从二维结构发展到三维结构并且伴随流向涡生成的整个过程,分析结果显示流向涡对湍流动能和质量传输有着重要作用,是湍流边界层相干结构的重要特征和运动形式.","authors":[{"authorName":"张楠","id":"8f38efc2-0b53-4086-b5f5-af16aee868a1","originalAuthorName":"张楠"},{"authorName":"刘凯","id":"8415ded7-d1d9-470a-b458-340f3dd9d148","originalAuthorName":"刘凯"},{"authorName":"陆利蓬","id":"b6ab444e-cf35-4b0e-ad11-c62db2a3df04","originalAuthorName":"陆利蓬"}],"doi":"","fpage":"85","id":"20dcfe52-1e31-4fa6-92a3-3e537efcf17a","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4967e14d-3f7d-464f-bcfc-7b05b1161f9a","keyword":"湍流边界层","originalKeyword":"湍流边界层"},{"id":"857bb2fd-df92-4112-94da-a4326d6f4144","keyword":"流向涡","originalKeyword":"流向涡"},{"id":"ffcaf3e6-9df6-456e-b1ed-364482bd9402","keyword":"直接数值模拟","originalKeyword":"直接数值模拟"},{"id":"fe30281d-3e42-4125-a085-e44947d0aa94","keyword":"相干结构","originalKeyword":"相干结构"},{"id":"ebb1e190-7ccb-4861-85b0-e84f30d6d4ab","keyword":"共振三波","originalKeyword":"共振三波"}],"language":"zh","publisherId":"gcrwlxb2006z1023","title":"湍流边界层内流向涡的数值模拟研究","volume":"27","year":"2006"},{"abstractinfo":"本文用三维激光多普勒测速技术测量了平面扩压叶栅的叶片吸力面角区流动湍流特性,如紊流动能分布、雷诺应力分布等.分析了角区内流向涡和通道涡对湍流特性分布的影响,结果表明:流向涡的核心区域及旋涡与附面层相互作用区域的湍流动能增加.同时,旋涡和旋涡运动强烈影响着雷诺正应力和切应力的分布规律.","authors":[{"authorName":"刘火星","id":"cde95db7-a137-44a3-a257-e178a38e9967","originalAuthorName":"刘火星"},{"authorName":"陈矛章","id":"bb6c4878-e0eb-41dc-8f03-d5a873d38941","originalAuthorName":"陈矛章"},{"authorName":"蒋浩康","id":"b144ed7c-da79-4e89-8f66-fb8e5854a48c","originalAuthorName":"蒋浩康"}],"doi":"","fpage":"23","id":"005fd34f-3336-433b-ba45-9714f7955c68","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"931f1d28-2dc0-424a-a035-e570213d9e0a","keyword":"叶栅流动","originalKeyword":"叶栅流动"},{"id":"b1c74d0e-6845-4425-aa7d-e3e87ce22e67","keyword":"旋涡","originalKeyword":"旋涡"},{"id":"c507c949-83b3-41a5-91bc-48274469f478","keyword":"湍流特性","originalKeyword":"湍流特性"}],"language":"zh","publisherId":"gcrwlxb200201007","title":"扩压叶栅端壁角区流向涡对湍流特性的影响","volume":"23","year":"2002"},{"abstractinfo":"采用格子涡方法对二维平板混合层流动进行了数值模拟,重点考察了格子涡方法定量模拟混合层流动流场下游不同流向位置各湍流统计平均量的能力.模拟结果表明:除横向脉动速度均方根比实验值大外,混合层流动在下游不同流向位置的流向平均速度,流向脉动速度均方根和雷诺应力的模拟结果都与实验结果定量符合得很好.此外,模拟结果还很好地反应出混合层流动的自相似性质.从而表明,格子涡方法具有对空间发展混合层流动进行较精确的定量模拟的能力.","authors":[{"authorName":"王赫阳","id":"c761a0a1-229b-427d-b0d7-e9dcacc6824b","originalAuthorName":"王赫阳"},{"authorName":"张会强","id":"78da236a-0be1-4954-93cb-865a181009e2","originalAuthorName":"张会强"},{"authorName":"王希麟","id":"219695c0-9705-48fe-b467-4ffea8d2b30d","originalAuthorName":"王希麟"},{"authorName":"郭印诚","id":"82f11fa8-4898-4c2d-811a-5d2e18772e95","originalAuthorName":"郭印诚"},{"authorName":"林文漪","id":"5206612a-74d5-49d8-82ad-3c0626895c0f","originalAuthorName":"林文漪"}],"doi":"","fpage":"576","id":"8cf19e77-1547-4627-bf9b-88e5eaf883bc","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"39d90ada-8858-4e65-9439-6a6c92a2bfb2","keyword":"格子涡方法","originalKeyword":"格子涡方法"},{"id":"37253aaa-a46f-4943-9fdc-0f987e179288","keyword":"混合层流动","originalKeyword":"混合层流动"},{"id":"f92fe77f-aa62-411e-a8a0-55762c1f1b6c","keyword":"离散涡方法","originalKeyword":"离散涡方法"}],"language":"zh","publisherId":"gcrwlxb200205013","title":"混合层流动的格子涡方法数值模拟","volume":"23","year":"2002"},{"abstractinfo":"本文采用展向周期性布置圆柱形粗糙元的方式,直接数值模拟了平板表面流向条纹的增长过程.研究发现由于流向涡的“lift-up”效应,粗糙元下游区域出现高速条纹结构,而粗糙元的尾流对于条纹结构的初期形成有着重要影响.随着流动的不断发展,展向脉动速度分布有发展成为正弦曲线形式的趋势,而法向脉动速度峰值则呈先减小后增大的趋势.","authors":[{"authorName":"刘骁飞","id":"10af4946-428c-440d-8d7e-2f214b3c7678","originalAuthorName":"刘骁飞"},{"authorName":"韦安阳","id":"c52c4c07-f173-4434-8dd0-ac9ba233d8e6","originalAuthorName":"韦安阳"},{"authorName":"罗坤","id":"bb4dd050-5187-441d-b3ac-57eb9aa34f01","originalAuthorName":"罗坤"},{"authorName":"樊建人","id":"918a81bc-79c1-48ba-807b-28833865a862","originalAuthorName":"樊建人"},{"authorName":"戴瑞","id":"51642923-3026-424f-8d19-471f06bd3521","originalAuthorName":"戴瑞"}],"doi":"","fpage":"1283","id":"e5b9d061-5616-4c62-a7d4-9026f7c3b40b","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8145f337-0d55-472f-ae32-44440ca0fc6d","keyword":"粗糙元","originalKeyword":"粗糙元"},{"id":"746774cf-b361-40ff-bd85-37ef293af14a","keyword":"直接数值模拟","originalKeyword":"直接数值模拟"},{"id":"8bc1c6a8-4e60-4219-9bca-d7c8b82dad12","keyword":"流向条纹","originalKeyword":"流向条纹"}],"language":"zh","publisherId":"gcrwlxb201307020","title":"粗糙元诱导流向条纹增长过程的直接数值模拟","volume":"34","year":"2013"},{"abstractinfo":"本文目的是研究声激励对自由射流流场结构的影响。采用多重网格方法对声激励下三维自由射流(Re=2200)的空间演化做大涡模拟。比较了无激励情况和不同频率声激励下射流涡量场的改变。计算表明,当声激励频率接近射流优势频率时,涡量场结构变化显著。周向涡量集中卷起形成大的涡环,射流径向扩展增大。当激励频率接近优势频率两倍时,有涡合并现象,说明出现次谐波。当激励频率远高于优势频率时,流场结构与无激励情况差别不大。本文还给出在接近优势频率的激励下射流中的流向涡量的分布,定性上与实验观察相同。","authors":[{"authorName":"朱旻明","id":"702c4a2b-802a-43a7-9cf6-0196b3d843f5","originalAuthorName":"朱旻明"},{"authorName":"赵平辉","id":"9207a85c-6e7d-4c80-b6ad-f10ff2448a01","originalAuthorName":"赵平辉"},{"authorName":"陈义良","id":"44ff9623-8ae0-4cd5-a021-1a6805fcf29a","originalAuthorName":"陈义良"},{"authorName":"白雪松","id":"8233562b-e368-4769-8e4b-a50a77d87e4f","originalAuthorName":"白雪松"},{"authorName":"","id":"c73931d5-dedc-46e0-bcd6-28faad3a98b9","originalAuthorName":""}],"doi":"","fpage":"1811","id":"a4da47c0-73ae-4fce-9e58-67cd545a0b62","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"6297eacf-1f5f-45b4-9080-e2eaec926db5","keyword":"声激励","originalKeyword":"声激励"},{"id":"8e1dedbc-c01a-42ff-a357-b632f317af46","keyword":"自由射流","originalKeyword":"自由射流"},{"id":"303c031d-f37c-4417-a6b9-869169f1f778","keyword":"大涡模拟","originalKeyword":"大涡模拟"},{"id":"0e66e105-e312-4cae-bc19-765f6f9687fa","keyword":"多重网格","originalKeyword":"多重网格"}],"language":"zh","publisherId":"gcrwlxb201210042","title":"声激励下自由射流的涡量场","volume":"33","year":"2012"},{"abstractinfo":"三角翼是涡发生器的主要结构型式,用于涡发生器的三角翼常处于翼面边界层内.本文采用数值求解雷诺平均NS方程的方法,以平板上一个三角翼模型为研究对象,研究不同来流边界层速度型(均匀分布、湍流边界层速度型和层流边界层速度型)和5种边界层厚度条件下,三角翼诱导涡沿流向的最大涡量分布规律及衰减规律.结果表明,湍流边界层下三角翼诱导涡最大涡量值要大于层流边界层,且边界层高度越低,诱导涡最大涡量值越大.","authors":[{"authorName":"李新凯","id":"7c4a2e5b-e43e-45da-a8b5-b14fb41cd508","originalAuthorName":"李新凯"},{"authorName":"康顺","id":"cba110b5-99f9-454a-b8c0-a0bb47b6f6a9","originalAuthorName":"康顺"},{"authorName":"戴丽萍","id":"f6f071c6-53bb-48ae-8c52-7c4e1e238d49","originalAuthorName":"戴丽萍"}],"doi":"","fpage":"1101","id":"2cf707cf-55a0-48e4-b2b0-c3d239e11584","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"cf0982b8-96d9-41bf-8b12-8a5aade33206","keyword":"边界层","originalKeyword":"边界层"},{"id":"ac6e0c9b-1c5f-477b-88ae-cf0bd6bc651b","keyword":"三角翼","originalKeyword":"三角翼"},{"id":"4bfef703-ea7a-457c-b251-0d099bc3c195","keyword":"诱导涡","originalKeyword":"诱导涡"},{"id":"3b1082e7-e58f-430d-afc8-eb9d194d9d56","keyword":"涡衰减","originalKeyword":"涡衰减"}],"language":"zh","publisherId":"gcrwlxb201406015","title":"来流边界层对三角翼诱导涡特性的影响","volume":"35","year":"2014"},{"abstractinfo":"本文利用大涡模拟方法研究了空间发展平板混合层流动,分别在三维模型和二维模型下,比较了大尺度结构涡的演化过程,以及流向速度、流向脉动速度、横向脉动速度和Reynolds应力的统计时均结果,并与实验结果对照,指出3D模拟无论在物理真实性还是预报结果准确性方面都要明显优于2D模拟.","authors":[{"authorName":"杨武兵","id":"b52b3018-723a-408c-9520-08af1b720f97","originalAuthorName":"杨武兵"},{"authorName":"张会强","id":"285bd323-63fb-4be8-a8d4-dc7382f1fe0b","originalAuthorName":"张会强"},{"authorName":"王希麟","id":"2291838c-a9ce-4e30-9228-484223b18aa3","originalAuthorName":"王希麟"},{"authorName":"郭印诚","id":"8cb2fec6-f01d-4f0d-9c5b-57b2cdec2a2b","originalAuthorName":"郭印诚"},{"authorName":"林文漪","id":"6e1b724e-8221-4f12-b7bf-fa396b78e798","originalAuthorName":"林文漪"}],"doi":"","fpage":"1046","id":"20054a40-69e1-4146-b3a7-56a8d76a1089","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"58b2c947-389e-4396-9d1d-2137478930f6","keyword":"平板混合层流动","originalKeyword":"平板混合层流动"},{"id":"b0142e2c-5cc9-4510-83e1-ed4a804852cf","keyword":"大涡模拟","originalKeyword":"大涡模拟"},{"id":"c3b9292b-3627-4678-afe4-d3600e516d85","keyword":"3D模拟","originalKeyword":"3D模拟"},{"id":"ccb0d836-6128-4d2e-8500-bbfe8b14f123","keyword":"2D模拟","originalKeyword":"2D模拟"}],"language":"zh","publisherId":"gcrwlxb200406046","title":"空间发展平板混和层流动的大涡模拟-3D与2D模拟的比较","volume":"25","year":"2004"},{"abstractinfo":"气膜冷却被广泛地应用在现代透平冷却设计中.由于叶栅环境的复杂性,叶栅气膜冷却特性与平板气膜冷却表现很不相同,主流流向压力梯度是叶栅流动的重要特征之一.本文采用PSP技术研究了不同流向压力梯度下的绝热气膜冷却效率,并同时进行了相应工况下的数值研究,来获得更详细的流场信息,以揭示流向压力梯度对气膜冷却有效度的影响机理.研究发现,低吹风比下,气膜冷却效率随流向顺压增大而提高,而高吹风比下,流向压力梯度对气膜冷却效率影响不大.","authors":[{"authorName":"秦晏旻","id":"bda4036e-c4b8-41dc-a76f-1396b84cc446","originalAuthorName":"秦晏旻"},{"authorName":"任静","id":"0bf224d9-578c-4ab1-97f5-73a40b9ca0ab","originalAuthorName":"任静"},{"authorName":"蒋洪德","id":"32e0cc39-4831-4cc1-887b-316b9bdfee82","originalAuthorName":"蒋洪德"}],"doi":"","fpage":"461","id":"e459b264-e1c0-464a-a9c2-50c9ad6595c8","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c950b4ef-4162-4493-bfe6-54c7dc80e6c6","keyword":"燃气轮机","originalKeyword":"燃气轮机"},{"id":"41974168-41ac-45b0-be50-1211b6970b2a","keyword":"气膜冷却","originalKeyword":"气膜冷却"},{"id":"7b3160e9-0f98-42ce-bdfb-3258f0200b02","keyword":"绝热气膜冷却效率","originalKeyword":"绝热气膜冷却效率"},{"id":"1674dc31-2151-4462-bf3e-a5cfc95dc81d","keyword":"压力梯度","originalKeyword":"压力梯度"},{"id":"942e233f-6aee-4011-95b2-29edfe2d0eff","keyword":"交互作用","originalKeyword":"交互作用"}],"language":"zh","publisherId":"gcrwlxb201403011","title":"主流流向压力梯度对气膜冷却效率的影响","volume":"35","year":"2014"},{"abstractinfo":"为了研究涡发生器在风力机叶片上的应用,以进一步提高风力机气动效率,本文采用CFD数值模拟方法,分析涡发生器几何形状对其绕流场和翼型边界层特性的影响.涡发生器几何形状为同样高度的矩形、梯形和三角形.翼型为风力机专用翼型DU97-W-300.首先对数值模拟结果与实验值进行了对比,验证了数值方法的可信性.然后详细讨论了各种涡发生器所产生的集中涡涡量、翼型边界层特性、以及绕流场等沿流向的发展演变.总体上看,三角形涡发生器较适合用于风力机翼型的流动控制.","authors":[{"authorName":"李新凯","id":"a1b89f45-33ef-4b80-b4b6-0496f7585519","originalAuthorName":"李新凯"},{"authorName":"康顺","id":"5d5f861a-553e-40aa-8e8b-816329e575d9","originalAuthorName":"康顺"},{"authorName":"戴丽萍","id":"299aaeab-67ce-45b3-89e5-3e3fd1af2cdc","originalAuthorName":"戴丽萍"},{"authorName":"焦建东","id":"6d1f4070-5204-4a32-92ce-f0308965a01d","originalAuthorName":"焦建东"}],"doi":"","fpage":"326","id":"70c4dbff-d5ab-4508-8c5b-50d670785228","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"795a3d9d-1af1-40fa-8f5d-40f43b8838bd","keyword":"涡发生器","originalKeyword":"涡发生器"},{"id":"7fefaab3-70ee-4d50-b2f9-688e1bab6636","keyword":"翼型","originalKeyword":"翼型"},{"id":"70f3f385-1912-47b4-a65f-b7f8ab96eddd","keyword":"绕流场","originalKeyword":"绕流场"},{"id":"9d921397-4e4a-456b-b862-29f4b43d6543","keyword":"流动控制","originalKeyword":"流动控制"}],"language":"zh","publisherId":"gcrwlxb201502021","title":"涡发生器结构对翼型绕流场的影响","volume":"36","year":"2015"},{"abstractinfo":"采用LES方法和虚拟粗糙元模型,,模拟了Rer=180有粗糙壁面的充分发展槽道湍流流动.从流向平均速度、脉动速度均方根、雷诺剪切应力、脉动速度相关,以及瞬时近壁准流向涡结构等多个方面,对粗糙壁面湍流边界层流动和拟序结构进行了分析.结果表明,粗糙壁面处雷诺剪切应力、脉动速度均方根以及近壁条带平均距离和准流向涡尺度都大于光滑壁面,且随着粗糙元高度的增加这种趋势更加明显.本工作为进一步研究颗粒在近壁区域的弥散规律奠定了基础.","authors":[{"authorName":"杨帆","id":"ceafb42f-b8b8-4846-a048-c424a498fc8c","originalAuthorName":"杨帆"},{"authorName":"张会强","id":"2c18f26f-5032-47cd-9bd8-14c6fc8bd2dc","originalAuthorName":"张会强"},{"authorName":"王希麟","id":"e0508ca1-4013-4728-b818-615d160b3d0c","originalAuthorName":"王希麟"}],"doi":"","fpage":"795","id":"3a275218-b3ad-4175-bec8-05bb95275aae","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"34d43d8b-628f-419e-aeda-245a353a4fd2","keyword":"大涡模拟","originalKeyword":"大涡模拟"},{"id":"84e8ffd0-fd5f-4196-97ac-768f48c93e9c","keyword":"粗糙壁面湍流","originalKeyword":"粗糙壁面湍流"},{"id":"c6c5a1d6-86e6-4e3d-b469-423c9849bad0","keyword":"拟序结构","originalKeyword":"拟序结构"}],"language":"zh","publisherId":"gcrwlxb200805019","title":"粗糙壁面湍流边界层流动和拟序结构的大涡模拟研究","volume":"29","year":"2008"}],"totalpage":63,"totalrecord":629}