欢迎登录材料期刊网

材料期刊网

高级检索

Based on the best bulk metallic glass (BMG) forming alloy in the Mg-Cu-Y ternary system, we introduced Ag (or Ni) to partially substitute for Cu to improve the glass-forming ability (GFA). The objective of this paper is twofold. First, we illustrate in detail a recently developed search strategy, which was proposed but only briefly outlined in our previous publication [H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005)]. The protocol to navigate in three-dimensional composition space to land large BMGs is spelled out step-by-step using the pseudo-ternary Mg-(Cu,Ag)-Y as the model system. Second, our ability to locate the best BMG former in the composition tetrahedron allows us to systematically examine, and conclude on, the effects of a given alloying element. The large improvement in glass-forming ability in the Mg-(Cu,Ag)-Y system relative to the based ternary will be contrasted with the reduced glass-forming ability in the Mg-(Cu,Ni)-Y pseudo ternary system. It is demonstrated that the improvement of glass-forming ability requires judicious choice of substitutional alloying elements and concentrations, rather than simple additions of multiple elements assuming the "confusion principle."

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%