欢迎登录材料期刊网

材料期刊网

高级检索

结合粒子沥滤-溶剂挥发法,制备以胶原作为孔壁修饰体的生物活性玻璃(BG)/聚己内酯(PCL)多孔骨修复复合材料。用SEM、FTIR、XRD、等离子体原子发射光谱仪和pH计等对材料的多孔及孔壁形貌、矿化活性、矿化溶液中离子浓度、pH值变化等进行了分析,采用bE重法和称重法研究了胶原对多孔材料的孔隙率和吸水倍率的影响。结果表明:胶原蛋白成功的黏附到了多孔材料的孔壁,有效改善了BG/PCL复合材料的亲水性、矿化活性和降解性能,其孔隙率和吸水倍率分别高达96.400%±0.018%和13.65±1.65。

Bioactive glass(BG)/poly(ε-caprolactone)(PCL) porous composites modified by collagen for bone repairing were prepared by combining particulates-leaching and solvent-evaporation methods. The morphology of the porous materials and pore wall, mineralization activity, ionic concentration and variation of pH values were characterized by SEM, FTIR, XRD, plasma atomic emission spectroscope and pH meter. The effects of colllagen on the porosity and water absorption rate were characterized by traditional specific-gravity and weighing methods. The results indicate that collagen can be succesfully adhered onto the pore wall and the mineralization activity and degradability of BG/PCL are effectively improved. Porosity and water absorption rate are as high as 96. 400%± 0. 018% and 13.65±1.65, respectively.

参考文献

[1] Choi J Y, Lee H H, Kim H W. Bioactive sol-gel glass added ionomer cement for the regeneration of tooth structure [J]. J Mater Sci-Mater M, 2008, 19(10): 3287-3294.
[2] Ye L, Zeng X C, Li H J, et al. Fabrication and biocompatibility of porously bioactive scaffold of nonstoichiometric apatite and poly-(epsilon-caprolactone) nanocomposite [J]. J Appl Polym Sci, 2010, 116(2): 762-770.
[3] 肖秀峰, 丁晓红, 刘淑琼, 等. 壳聚糖/聚己内酯-聚乳酸多孔支架制备和表征 [J]. 复合材料学报, 2010, 27(6): 100-105.
[4] 黄琼瑜, 佘厚德, 肖秀峰, 等. 羟基磷灰石/聚己内酯-壳聚糖复合材料的制备与表征 [J]. 复合材料学报, 2009, 26(1): 24-30.
[5] 丁晓红, 刘榕芳, 肖秀峰, 等. 浸没凝胶相分离法制备聚己内酯多孔支架 [J]. 复合材料学报, 2010, 27(2): 43-49.
[6] Rich J, Jaakkola T, Tirri T, et al. In vitro evaluation of poly(ε-caprolactone-co-dl-lactide)/bioactive glass composites [J]. Biomaterials, 2002, 23(10): 2143-2150.
[7] Li X, Shi J, Dong X, et al. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior [J]. J Biomed Mater Res A, 2008, 84(1): 84-91.
[8] Lee J, Yu H, Hong S, et al. Nanofibrous membrane of collagen-polycaprolactone for cell growth and tissue regeneration [J]. Journal of Materials Science: Materials in Medicine, 2009, 20(9): 1927-1935.
[9] Jo J H, Lee E J, Shin D S, et al. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(ε-caprolactone) composite materials [J]. J Biomed Mater Res B, 2009, 91(1): 213-220.
[10] Liu W, Deng C, Mclaughlin C R, et al. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes [J]. Biomaterials, 2009, 30(8): 1551-1559.
[11] Vennat E, Bogicevic C, Fleureau J M, et al. Demineralized dentin 3D porosity and pore size distribution using mercury porosimetry [J]. Dent Mater, 2009, 25(6): 729-735.
[12] Chen X, Meng Y, Li Y, et al. Investigation on bio-mineralization of melt and sol-gel derived bioactive glasses [J]. Appl Surf Sci, 2008, 255(2): 562-564.
[13] Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution [J]. Biomaterials, 2009, 30(12): 2175-2179.
[14] Yu H, Matthew H W, Wooley P H, et al. Effect of porosity and pore size on microstructures and mmechanical properties of poly-ε-caprolactone-hydroxyapatite composites [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008, 86(2): 541-547.
[15] Yu H Y, Vandevord P J, Mao L, et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization [J]. Biomaterials, 2009, 30(4): 508-517.
[16] 顾其胜, 侯春林, 徐政主. 实用生物医学材料 [M]. 上海: 上海科学技术出版社, 2005: 67.
[17] Niemela T, Niiranen H, Kellomaki M. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents: Part Ⅱ—In vitro degradation [J]. Acta Biomater, 2008, 4(1): 156-164.
[18] Jaakkola T, Rich J, Tirri T, et al. In vitro Ca-P precipitation on biodegradable thermoplastic composite of poly-(ε-caprolactone-co-dl-lactide) and bioactive glass (S53P4) [J]. Biomaterials, 2004, 25(4): 575-581.
[19] Wang K, Li W W, Gao C. Poly(epsilon-caprolactone)-functionalized carbon nanofibers by surface-initiated ring-opening polymerization [J]. J Appl Polym Sci, 2007, 105(2): 629-640.
[20] Hench L L, Polak J M. Third-generation biomedical materials [J]. Science, 2002, 295(5557): 1014-1017.
[21] Hench L L. Genetic design of bioactive glass [J]. Journal of the European Ceramic Society, 2009, 29(7): 1257-1265.
[22] Meretoja V V, Helminen A O, Korventausta J J, et al. Crosslinked poly(ε-caprolactone/dl-lactide)/bioactive glass composite scaffolds for bone tissue engineering [J]. J Biomed Mater Res A, 2006, 77A(2): 261-268.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%