欢迎登录材料期刊网

材料期刊网

高级检索

在分析炭黑填充橡胶复合材料的宏观与细观特征之间联系的基础上,提出了具有随机分布形态的代表性体积单元,推导并应用了周期性细观结构的边界约束条件,建立了三维多颗粒夹杂代表性体积单元的数值模型,对炭黑填充橡胶复合材料的宏观力学行为进行了模拟仿真.研究表明,该模型通过周期性边界条件的约束保证了宏观结构变形场和应力场的协调性;计算得到的炭黑填充橡胶复合材料的弹性模量明显高于未填充橡胶材料,并随着炭黑颗粒所占体积分数的增加而增大;该模型对复合材料有效弹性模量的预测结果与实验结果吻合较好,而且比Bergstrom 三维模型的预测结果更好,证实了该模型能够用于炭黑颗粒增强橡胶基复合材料有效性能的模拟分析.

参考文献

[1] 王艳秋.橡胶材料基础[M].北京:化学工业出版社,2006:115-128.Wang Yanqiu.Basis of rubber materials[M].Beijing:Chemical Industry Press,2006:115-128.
[2] 乔生儒.复合材料细观力学性能[M].西安:西北工业大学出版社,1997:86-97.Qiao Shengru.Mesoscopic mechanical properties of composite materials[M].Xi'an:Northwest Polytechnic University Press,1997:86-97.
[3] 陈云,于艳.颗粒随机分布复合材料的细观构造对有效热传导系数的影响[J].复合材料学报,2012,29(2):145-149.Chen Yun,Yu Yan.Micro-structure of composites with randomly distributed particles on the impact of the effective thermal conductivity parameters[J].Acta Materiae Compositae Sinica,2012,29(2):145-149.
[4] 于敬宇,李玉龙,周宏霞,等.颗粒尺寸对颗粒增强型金属基复合材料动态特性的影响[J].复合材料学报,2005,22(5):31-38.Yu Jingyu,Li Yulong,Zhou Hongxia,et al.Influence of particle size on the dynamic behavior of PMMCs[J].Acta Materiae Compositae Sinica,2005,22(5):31-38.
[5] Govindjee S.An evaluation of strain amplification concepts via Monte Carlo simulations of an ideal composite[J].Rubber Chemistry and Technology,1997,70:25-37.
[6] Bergstrom J S,Boyce M C.Mechanical behavior of particle filled elastomers[J].Rubber Chemistry and Technology,1999,72:633-656.
[7] 夏 勇.轮胎胶料在较大变形范围内准静态力学性能的研究——测试、表征以及细观数值本构模型[D].安徽:中国科学技术大学,2004.Xia Yong.Study on the testing and characterization for the macroscopic quasi-static mechanical behavior of rubber-like materials,and on the mesoscopic constitutive model of carbonblack filled rubber within moderate finite deformation[D].Anhui:University of Science and Technology of China,2004.
[8] Segurado J,Llorca J.A numerical approximation to the elastic properties of sphere-reinforced composites[J].Journal of the Mechanics and Physics of Solids,2002,50:2107-2121.
[9] Bergstrom J S,Boyce M C.Large strain time-dependent behavior of filled elastomers[J].Mechanics of Materials,2000,32:627-644.
[10] Gitman I M,Askes H,Sluys L J.Representative volume:Existence and size determination[J].Engineering Fracture Mechanics,2007,74:2518-2534.
[11] Hassani B,Hinton E.A review of homogenization and topology optimization Ⅱ:Analytical and numerical solution of homogenization equations[J].Computers and Structures,1998,69:719-738.
[12] Smit R J M,Brekelmans W A M,Meijer H E H.Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling[J].Computer Methods in Applied Mechanics and Engineering,1998,155:181-192.
[13] Smit R J M,Brekelmans W A M,Meijer H E H.Prediction of the large-strain mechanical response of heterogeneous polymer systems:Local and global deformation behavior of a representative volume element of voided polycarbonate[J].Journal of the Mechanics and Physics of Solids,1999,47:201-221.
[14] Boyce M C,Arruda E M.Constitutive models of rubber elasticity:A review[J].Rubber Chemistry and Technology,2000,73(3):504-552.
[15] 张少实,庄茁.复合材料与粘弹性力学[M].北京:机械工业出版社,2005:165-181.Zhang Shaoshi,Zhuang Zhuo.Composite materials and viscoelastic mechanics[M].Beijing:China Machine Press,2005:165-181.
[16] Gent A N.Engineering with rubber:How to design rubber components[M].Lübeck:Hanser Gardner Publications,2001:260-273.
[17] 李庆,杨晓翔.炭黑填充橡胶复合材料的宏细观力学行为研究[J].机械工程学报,2013,49(18):132-139.Li Qing,Yang Xiaoxiang.Study on macroscopic and microscopic mechanical behavior of carbon black filled rubber composites[J].Chinese Journal of Solid Mechanics,2013,49(18):132-139.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%