欢迎登录材料期刊网

材料期刊网

高级检索

采用一种时间-空间多尺度高阶渐近均匀化分析方法,模拟了热冲击载荷条件下多维微尺度多相周期性结构中的非经典热传导问题.通过引入放大空间尺度和缩小时间尺度,在不同时间尺度上获得由空间非均匀性引起的波动效应和非局部效应.根据高阶均匀化理论在空间和时间上进行均匀化,消去缩小时间尺度,确定各阶等效均匀化热传导系数的关系并对该系数进行数值求解,获得了多维非傅里叶热传导高阶非局部温度场控制方程.进而对二维周期性多相材料中的非傅里叶热传导问题进行分析,结果证明了本文中所提出的多维非傅里叶热传导高阶非局部模型的正确性与有效性.

参考文献

[1] 白以龙,汪海英,夏蒙棼,等.固体的统计细观力学-连接多个耦合的时空尺度[J].力学进展,2006,36(2):286-305.Bai Yilong,Wang Haiying,Xia Mengfen,et al.Statistical mesomechanics of solid,linking coupled multiple space and time scales[J].Advances in Mechanics,2006,36(2):286-305.
[2] 崔俊芝,曹礼群.具有小周期孔隙复合材料弹性结构的双尺度有限元分析[J].系统科学与数学,2000,20(2):217-223.Cui Junzhi,Cao Liqun.The two-scale finite element analysis for the elastic structures of composite materials with small periodic cavities[J].Journat of Systems Science and Mathematical Sciences,2000,20(2):217-223.
[3] 冯淼林,吴长春,孙慧玉.三维均匀化方法预测编织复合材料等效弹性模量[J].材料科学与工程,2001,19(3):34-37.Feng Miaolin,Wu Changchun,Sun Huiyu.Three-dimensional homogenization method in constitutive simulation of braided composite materials[J].Materials Science & Engineering,2001,19(3):34-37.
[4] 潘燕环,稽醒,薛松涛.单向复合材料损伤刚度的双重均匀化方法[J].同济大学学报,1997,25(6):624-628.Pan Yanhuan,Ji Xing,Xue Songtao.Double homogenization method for analyzing the damaged stiffnesses of unidirectional composites[J].Journal of Tongii University,1997,25 (6):624-628.
[5] 梁军,杜善义.粘弹性复合材辩力学性能的细观研究[J].复合材料学报,2001,18(1):97-100.Liang Jun,Du Shanyi.Study of mechanical properties of viscoelastic matrix composite by micromeehanics[J].Acta Materiae Compositae Sinica,2001,18(1):97-100.
[6] 周储伟,王鑫伟,杨卫,等.短纤维增强金属基复合材料的多重损伤分析[J].复合材料学报,2001,18(4):64-67.Zhou Chuwei,Wang Xinwei,Yang Wei,et al.Multiple damage analysis of short fiber reinforced metal matrix composites[J].Acta Materiae Compositae Sinica,2001,18(4):64-67.
[7] 张洪武,王鲲鹏.弹塑性多尺度计算的模型与算法研究[J].复合材料学报,2003,20(1):60-66.Zhang Hongwu,Wang Kunpeng.Numerical model and algorithm for multi-scale analysis of elastic-plastic composite materials[J].Acta Materiae Compositae Sinica,2003,20(1):60-66.
[8] 过增元.国际传热研究前沿-微细尺度传热[J].力学进展,2000,30(1):1-6.Guo Zengyuan.Frontier of heat transfer-Microacale heat transfer[J].Advances in Mechanics,2000,30(1):1-6.
[9] 蒋方明,刘登瀛,多孔材料内非傅立叶导热现象的实验研究结果及理论分析[J].工程热物理学报,2001,22(增刊):77-80.Jiang Fangming,Liu Dengying.Experimental results and theoretical analysis of non-Fourier heat conduction phenomenon in porous material[J].Journal of Engineering Thermophysics,2001,22(Suppl):77-80.
[10] 曹礼群,罗剑兰.多孔复合介质周期结构热传导和质扩散问题的多尺度数值方法[J].工程热物理学报,2000,21(5):610-614.Cao Liqun,Luo Jianlan.Multiscale numerical methods for heat and mass transfer problems of composite porous media with periodic structures[J].Journal of Engineering Thermophysics,2000,21(5):610-614.
[11] 张洪武,张盛,郭旭,等.周期性材料非经典热传导时空间多尺度分析方法[J].复合材料学报,2004,21(6):143-148.Zhang Hongwu,Zhang Sheng,Guo Xu,et al.Nonclassical heat conduction analysis in periodic structures with multiple spatial and temporal scales analysis method[J].Acta Materiae Compositae Sinica,2004,21(6):143-148.
[12] Zhang H W,Zhang S,Guo X,et al.Multiple spatial and temporal scales method for numerical simulation of nonclassical heat conduction problems:One dimensional case[J].International Journal of Solids and Structures,2005,42(3/4):877-899.
[13] Zhang H W,Zhang S,Bi J Y,et al.Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach[J].International Journal for Numerical Methods in Engineering,2007,69(1) 87-113.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%