欢迎登录材料期刊网

材料期刊网

高级检索

采用机械合金化和放电等离子烧结(SPS)技术制备了纳米TiC颗粒弥散增强超细晶W-TiC复合材料,对超细晶W-TiC复合材料的显微组织和室温力学性能进行了研究.研究表明,采用SPS工艺于1700℃下烧结1 min可获得烧结颗粒结合良好,致密度高达约98.6%的超细晶W-TiC复合材料.通过添加纳米TiC,不仅能抑制W晶粒的长大,还能促进W的致密化.当TiC的加入量为0.7%时(质量分数,下同)可获得晶粒尺寸为0.5 μm,抗弯强度和维氏硬度分别为1262MPa,6.45 GPa的超细晶W-TiC复合材料.

参考文献

[1] Smid I;Akiba M;Vieider G et al.[J].Journal of Nuclear Materials,1998,253-263:160.
[2] Kurishita H;Amano Y;Kobayashi S;Nakai K;Arakawa H;Hiraoka Y;Takida T;Takebe K;Matsui H .Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2007(b):1453-1457.
[3] Kurishita H;Matsuo S;Arakawa H et al.[J].Journal of Nuclear Materials,2009,386-388:579.
[4] 于福文,吴玉程,陈俊凌,陈勇,种法力.纳米TiC颗粒弥散增强超细晶钨基复合材料的组织结构与力学性能[J].功能材料,2008(01):139-142.
[5] Song Guiming;Zhou Yu;Lei Tingquan et al.[J].Transactions of Nonferrous Metals Society of China,1999,9(01):49.
[6] Rea K E;Viswanathan V;Kruize A et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2008,477:350.
[7] Pintsuk G;Kühnlein W;Linke J et al.[J].Fusion Engineering and Design,2007,82:1720.
[8] Zhou Z;Pintsuk G;Linke J et al.[J].Fusion Engineering and Design,2010,85(01):115.
[9] Zhou Z;Linke J;Pintsuk G et al.[J].Journal of Nuclear Materials,2009,386-388:733.
[10] Zhou Z;Ma Y;Du J et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2009,505(01):131.
[11] Zhou Z;Du J;Song S et al.[J].Journal of Nanoscience and Nonotechnology,2009,9(02):809.
[12] Kim Y;Lee K H;Kim E P et al.[J].International Journal of Refractory Metals and Hard Materials,2009,27:842.
[13] Cho K C;Woodman R H;Klotz B R et al.[J].Materials and Manufacturing Processes,2004,19(04):619.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%