欢迎登录材料期刊网

材料期刊网

高级检索

在氩气气氛下,采用机械球磨法制备AlCl3掺杂的4MgH2-Li3 AlH6储氢材料,研究AlCl3对4MgH2-Li3 AlH6脱氢性能的影响.借助热重(TG)法研究了4MgH2-Li3 AlH6-AlCl3体系的放氢性能,并运用X射线衍射(XRD)分析和差示扫描量热(DSC)法对其反应机理进行了探索.实验结果表明,加入AlCl3可有效增加4MgH2-Li3 AlH6体系的反应活性,促进二者分解放氢,并降低该体系的放氢温度,增大总脱氢量.当AlCl3的掺杂量为4%(摩尔分数)、磨球24颗、球磨时间2.0h和转速541 r/min时,4MgH2-Li3 AlH6-AlCl3体系起始放氢温度降至130℃,比4MgH2-Li3 AlH6体系降低了43℃;且400℃时总脱氢量从5.5%(质量分数)增加到6.3%(质量分数).同时,机理研究表明:在球磨过程中部分Li3 AlH6和AlCl3发生反应,产生了活性Al,进而改善了体系的放氢性能.

参考文献

[1] 孙立贤,宋莉芳,姜春红,刘淑生,焦成丽,王爽,司晓亮,张箭,李芬,徐芬,黄风雷.新型储氢材料及其热力学与动力学问题[J].中国科学B辑,2010(09):1243-1252.
[2] Zaluska A;Zaluski L;Str(o)m-Olsen J O .Structure,catalysis and atomic reactions on the nano-seale:A systematic approach to metal hydrides for hydrogen storage[J].Applied Physics A(Materials Science and Processing),2001,72(02):157.
[3] Simon R. Johnson;Paul A. Anderson;Peter P. Edwards;Ian Gameson;James W. Prendergast;Malek Al-Mamouri;David Book;I. Rex Harris;John D. Speight;Allan Walton .Chemical activation of MgH_2; a new route to superior hydrogen storage materials[J].Chemical communications,2005(22):2823-2825.
[4] Schlapbach L;Zuttel A .Hydrogen-storage materials for mobile applications[J].NATURE,2001,414(6861):353.
[5] Wojciech Grochala;Peter P.Edwards .Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen[J].Chemical Reviews,2004(3):1283-1315.
[6] Bogdanovic B;Bohmharnrnel K;Christ B et al.Thermodynamic investigation of the magnesiumehydrogen system[J].Journal of Alloys and Compounds,1999,282(01):84.
[7] Czujko T;Zaranski Z;Malka I E et al.Composite behaviour of MgH2 and complex hydride mixtures synthesized by ball milling[J].Journal of Alloys and Compounds,2010,509(02):604.
[8] I.E. Malka;M. Pisarek;T. Czujko;J. Bystrzycki .A study of the ZrF_4 NbF_5 TaF_5 and TiCl_3 influences on the MgH_2 sorption properties[J].International journal of hydrogen energy,2011(20):12909-12917.
[9] M. Abdellatief;R. Campostrini;M. Leoni;P. Scardi .Effects of SnO_2 on hydrogen desorption of MgH_2[J].International journal of hydrogen energy,2013(11):4664-4669.
[10] Yao Zhang;Qi-Feng Tian;Shu-Sheng Liu;Li-Xian Sun .The Destabilization Mechanism And De/re-hydrogenation Kinetics Of Mgh_2-lialh_4 Hydrogen Storage System[J].Journal of Power Sources,2008(2):1514-1518.
[11] Destabilization Of Lialh_4 By Nanocrystalline Mgh_2[J].International journal of hydrogen energy,2009(5):2333-2339.
[12] Shunsuke Kato;Andreas Borgschulte;Michael Bielmann .Interface reactions and stability of a hydride composite (NaBH4 + MgH2)[J].Physical chemistry chemical physics: PCCP,2012(23):8360-8368.
[13] Kuikui Wang;Xiangdong Kang;Junhong Luo;Chaohao Hu;Ping Wang .Improved reversible dehydrogenation properties of LiBH_4-MgH_2 composite by tailoring nanophase structure using activated carbon[J].International journal of hydrogen energy,2013(9):3710-3716.
[14] Sabitu S T;Goudy A J .Dehydrogenation kinetics and modeling studies of 2LiBH4 + MgH2 enhanced by NbF5 catalyst[J].J Phys Chem C,2012,116(15):13545.
[15] Shu-Sheng Liu;Li-Xian Sun;Jian Zhang;Yao Zhang;Fen Xu;Yong-Heng Xing;Fen Li;Jijun Zhao;Yong Du;Wang-Yu Hu;Hui-Qiu Deng .Hydrogen storage properties of destabilized MgH_2-Li_3AlH_6 system[J].International journal of hydrogen energy,2010(15):8122-8129.
[16] Shu-Sheng Liu;Li-Xian Sun;Fen Xu;Jian Zhang;Zhong Cao;Ying-liang Liu .Improved dehydrogenation of MgH2-Li3AlH6 mixture with TiF3 addition[J].International journal of hydrogen energy,2011(18):11785-11793.
[17] M. Ismail;Y. Zhao;X.B. Yu;S.X. Dou .Improved hydrogen storage performance of MgH_2-NaAlH_4composite by addition of TiF_3[J].International journal of hydrogen energy,2012(10):8395-8401.
[18] J.R. Ares Fernandez;F. Aguey-Zinsou;M. Elsaesser;X.Z. Ma;M. Dornheim;T. Klassen;R. Bormann .Mechanical and thermal decomposition of LiAlH_4 with metal halides[J].International journal of hydrogen energy,2007(8):1033-1040.
[19] The dehydrogenation performance and reaction mechanisms of Li_3AlH_6 with TiF_3 additive[J].International journal of hydrogen energy,2010(10):P.4554.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%