提出了一种求解二维非定常不可压缩Navier-Stokes方程组的全隐二阶时间推进和空间四阶差分紧致格式,在每一个时间步上,采用多重网格的全近似格式(FAS)加速其迭代收敛过程.利用该方法对驱动方腔流动问题进行了直接数值模拟,结果显示对于Re≤5000,本文在粗网格上(64×64等分和128×128等分)即可得到较为准确的定常层流解;对于Re=7500和10000,由于更多二次涡的出现,本文在256×256等分网格上同样可得到与前人的结果相吻合的非定常周期性解.
参考文献
[1] | Ghia U;Ghia K N;Shin C .High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method[J].Journal of Computational Physics,1982,48:387-411. |
[2] | 葛永斌 .高精度紧致差分格式的多重网格算法和平面驱动方腔问题的数值模拟[D].银川:宁夏大学,2000. |
[3] | 刘宏;傅德薰;马延文 .迎风紧致格式与驱动方腔流动问题的直接数值模拟[J].中国科学A辑,1993,23(06):657-665. |
[4] | Nobile E. .SIMULATION OF TIME-DEPENDENT FLOW IN CAVITIES WITH THE ADDITIVE-CORRECTION MULTIGRID METHOD .2. APPLICATIONS[J].Numerical Heat Transfer, Part B. Fundamentals: An International Journal of Computation and Methodology,1996(3):351-370. |
[5] | 田振夫 .求解泊松方程的紧致高阶差分方法[J].西北大学学报(自然科学版),1996,26(02):109-114. |
[6] | Hirsh R S .Higher Order Accurate Difference Solutions of Fluid Mechanics Problem by a Compact Differencing Technique[J].Journal of Computational Physics,1975,19:90-109. |
[7] | BRANDT A .Multi-Level Adaptive Solution to BoundaryValue Problems[J].Mathematics of Computation,1977,31:333-390. |
[8] | 刘超群.多重网格法及其在计算流体力学中的应用[M].北京:清华大学出版社,1995 |
[9] | Spotz W F .Accuracy and Performance of Numerical Wall Boundary Condition for Steady 2D Incompressible Streamfunction-Vorticity[J].International Journal for Numerical Methods in Fluids,1998,28:737-757. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%