采用双向耦合模型对有涡配对的二维气固两相混合层数值模拟,在考虑颗粒对流场反作用基础上进一步对颗粒间通过流体的相互作用进行分析.流场用拟谱方法求解,颗粒用颗粒轨道模型跟踪.结果发现,流场中大涡卷起和配对仍居主导地位;颗粒St数为O(0.1)~O(1)时,颗粒减弱了流场雷诺应力强度,加快涡量扩散;St数为O(1)时,颗粒分布极不均匀,主要集中在涡的边缘.
参考文献
[1] | Crowe C T;Troutt T R;Chung J N .Numerical Models for Two-phase Turbulent Flows[J].Annual Review of Fluid Mechanics,1996,28:11-18. |
[2] | Chen H;Marshall J S .A Lagrangian Vorticity Method for Two-phase Particle Flows with Two-way Phase Coupling[J].Journal of Computational Physics,1999,148:169-175. |
[3] | Pan Y;Banerjee S .Numerical Simulation of Particle Interactions with Wall Turbulence[J].Physics of Fluids,1996,8:2733-2740. |
[4] | Durlofsky L;Brady J F .Dynamic Simulation of Hydrodynamically Interaction Particles[J].Journal of Fluid Mechanics,1987,180:21-34. |
[5] | 蒋伯诚;周振中;常谦顺.计算物理中的谱方法--FFT及其应用[M].长沙:湖南科学技术出版社,1989 |
[6] | 余钊圣;林建忠 .混合层中由次谐波导致的二次失稳的数值研究[J].空气动力学学报,1998,16(04):439-C446. |
[7] | Happel J;Brenner H.Low Reynolds Number Hydrodynamics[M].Hague: Martinus Nijhoff,1983 |
[8] | Maxey M R;Riley J J .Equation of Motion for a Small Rigid Sphere in a Uniform Flow[J].Physics of Fluids,1983,26:883-891. |
[9] | Crowe C T;Gore R A;Troutt T R .Particle Dispersion by Coherent Structures in Free Shear Fflows[J].Particulate Science and Technology,1985,3:149. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%