研究了锰掺杂对PZT材料微结构及压电性能的影响,并用ESR确定了锰在PZT材料中的价态.结果表明,锰在PZT材料中主要以 Mn2+和 Mn3+的方式共存.锰在PZT陶瓷材料中的“溶解度”约为1.5mol%.锰含量<0.5mol%时,Mn将以Mn2+和Mn3+的方式优先进入晶格 Pb位,使材料的压电性能提高,表现出施主杂质特性;锰浓度处于 0.5~1.5 mol%时,部分Mn将以Mn3+或Mn2+的方式进入晶格中(Zr;Ti)位,而此浓度范围内锰掺杂的PZT材料同时表现出“软性”和“硬性”材料的压电特性.锰含量>1.5mol%时,过量的Mn将在晶界积聚,使压电活性降低.少量Fe的存在,可使Mn离子的溶解度降低,并起到抑制Mn2+和 Mn3+氧化的作用.
The effects of manganese addition on the microstructure and piezoelectric properties of PZT were studied. The valence states of manganese
were also measured by ESR. It shows that manganese coexists mainly in Mn2+ and Mn3+ in PZT ceramics. The solubility limit of MnO in PZT ceramics
is about 1.5mol%. Mn ion is preferentially incorporated in the lattice Pb site in Mn2+ or Mn3+ acted as donor when the concentration of Mn ion is
below 0.5mol%, which will improve the piezoelectric properties. In the concentration region of 0.5-1.5mol%, some Mn ion will be incorporated in the
lattice of (Ti , Zr) site in Mn3+ or Mn+2 acted as acceptor, and correspondingly the Mn-doped PZT ceramics exhibit properties of both “soft” and
“hard” piezoelectrics simultaneously. When the concentration of Mn ion is larger than 1.5mol%, it will accumulate at the grain boundaries and give rise to the
decrease of piezoelectric properties of PZT ceramics. Small amount of Fe may decrease the solubility limit of Mn ion in PZT ceramics and it may also prevent
the oxidation of Mn2+ and Mn3+.
参考文献
[1] | Takahashi S, Takahashi M. J. Appl. Phys. 1972, 11: 1231--1246. [2] Takahashi S. Ferroelectrics, 1982, 41: 143--156. [3] NG Y S, Alexander S M. Ferroelectrics, 1983, 51: 81--86. [4] Wersing W. Ferroelectrics, 1976, 12: 143--145. [5] Hennings D, Pomplun H. J. Amer. Ceram. Soc., 1974, 57: 527--530. [6] Kamiya T, Suzuki T, Tsurami T, et al, Jpn. J. Appl. Phys., 1992, 31: 3058--3060. [7] Bykov I P, Glinchvk M D M, Skorokhod V V. Ferroelectrics, 1992, 127: 89--94. [8] 裘祖文. 电子自旋共振谱. 北京: 科学出版社, 1980. [9] Gerthsen P, Hardtl K H, Schmidt N A. J. Appl. Phys., 1980, 51: 1131--1134. [10] Nowick A S, Berry B S. Anelastic Relaxation in Crystalline Solids. New York: Academic Press, 1972. [11] Wang Y N, et al. J. de Physique, 1986, 6: 505--514. [12] 贺连星, 李承恩, 朱为民. 材料导报,1999, 13 (2): 32--34. [13] Postnikov V S, Pavlov V S, Turkov S K. J. Phys. Chem. Solids., 1970, 31: 1785--1791. [14] 王志勇. 上海冶金研究所博士论文, 1998. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%