欢迎登录材料期刊网

材料期刊网

高级检索

采用热膨胀法和金相法研究了以5℃/min的加热速率连续加热某Ti-Al-Mo-Cr-Zr-Si系新型钛合金过程中的相变过程、组织演变规律以及α相→β相的转变速率。结果表明:该合金连续加热过程中,在280~505℃温度范围内,板条状α相逐渐长大,且含量逐渐增多,发生β→α相变;在505~610℃温度范围内,板条状α相变细、变短,发生由短程扩散控制的α→β相变,此阶段温度对α相→β相的转变速率影响不大;在610~930℃温度范围内,板条状α相含量明显减少,直至消失,发生由长程扩散控制的α→β相变,此阶段α相→β相的转变速率随着温度的升高明显加快,当温度达到900℃时,α相→β相的转变速率逐渐减缓。

The phase transformation, microstructure evolution rule and rate of α→βtransformation in a new titanium alloy during continuous heating at 5 ℃/min heat rate have been studied by thermal dilatometer and metallographic methods.The results showed that the lathy-shapedαphase grew up and increased gradually in the range of 280 ℃to 505 ℃during continuous heating, and theβ→αtransformation occurred.The lathy-shapedαphase became finer and shorter in the range of 505 ℃ to 610 ℃, and the α→βtransformation occurred which was controlled by short-range diffusion.The temperature did not influence the rate ofα→βtransformation obviously in this stage.The lathy-shapedαphase decreased significantly, until disappeared in the range of 610 ℃ to 930 ℃, and the α→βtransformation occurred which was controlled by long-range diffusion.In this stage, the rate ofα→βtransformation increased with the increasing temperature at first, when the temperature reached 900 ℃, the rate of α→βtransformation slowed down gradually.

参考文献

[1] 朱知寿.我国航空用钛合金技术研究现状及发展[J].航空材料学报,2014(4):44-50.
[2] 赵永庆,葛鹏.我国自主研发钛合金现状与进展[J].航空材料学报,2014(4):51-61.
[3] 费跃,朱知寿,王新南,李军,商国强,祝力伟.锻造工艺对新型低成本钛合金组织和性能影响[J].稀有金属,2013(02):186-191.
[4] 费跃;朱知寿;王新南 等.热处理工艺对新型抗疲劳低成本钛合金组织和性能影响[J].中国有色金属学报,2013,23(专辑1):398-402.
[5] 商国强,王新南,费跃,李军,祝力伟,朱知寿.新型低成本钛合金高周疲劳性能和断裂韧度[J].失效分析与预防,2013(02):74-78,106.
[6] 常辉,周廉,张廷杰.钛合金固态相变的研究进展[J].稀有金属材料与工程,2007(09):1505-1510.
[7] 辛社伟.钛合金固态相变的归纳与讨论(Ⅴ)--相与相变谈[J].钛工业进展,2013(03):12-15.
[8] 吴晓东,杨冠军,葛鹏,毛小南,冯宝香.β钛合金及其固态相变的归纳[J].钛工业进展,2008(05):1-6.
[9] 常辉,周廉,王向东.我国钛工业与技术进展及展望[J].航空材料学报,2014(4):37-43.
[10] 戴世娟,王煜,陈锋,余新泉,张友法.退火工艺对大形变冷轧Ti-35Nb-9Zr-6Mo-4Sn医用钛合金组织和力学性能的影响[J].材料工程,2013(11):20-25.
[11] YiHong Wang;Hongchao Kou;Hui Chang;ZhiShou Zhu;FengShou Zhang;Jinshan Li;Lian Zhou .Influence of solution temperature on phase transformation of TC21 alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2009(1/2):76-82.
[12] Tarín P;Alonso I;Simón A G et al.Characterization of theα吃βtransformations in a Ti-6Al-2Sn-4Zr-6Mo (wt.%) alloy[J].Materials Science and Engineering A,2008,481-482:559-561.
[13] P. Tarin;A.L. Fernandez;A.G. Simon;J.M. Badia;N.M. Piris .Transformations in the Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy and mechanical and microstructural characteristics[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):364-368.
[14] Zhou, Z.;Lai, M.;Tang, B.;Kou, H.;Chang, H.;Zhu, Z.;Li, J.;Zhou, L. .Non-isothermal phase transformation kinetics of ω phase in TB-13 titanium alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(20):5100-5104.
[15] Fei Yue;Tang Bin;Kou Hongchao.Phase transformation and microstructure evolution in hot rolled TB-13 alloy during continuous heating[A].Beijing,Science Press,2011:552-555.
[16] Szkliniarz W;Smolka G .Analysis of volume effects of phase transformation in titanium alloys[J].Journal of Materials Processing Technology,1995,53(1/2):413-422.
[17] YiHong Wang;Hongchao Kou;Hui Chang .Phase transformation in TC21 alloy during continuous heating[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):252-256.
[18] Elmer JW;Palmer TA;Babu SS;Specht ED .In situ observations of lattice expansion and transformation rates of alpha and beta phases in Ti-6Al-4V[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):104-113.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%